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Abstract

Anti-Money Laundering (AML) detection is a critical regulatory and operational function for financial
institutions. Traditional rule-based systems capture known typologies but produce high false positive
rates, operational burden, and limited adaptive capacity against evolving threats. Recent advances in
artificial intelligence (Al) and machine learning (ML) including supervised classifiers, unsupervised
anomaly detection, graph learning, and explainable Al (XAl) provide the potential to transform AML
operations: improving detection quality, prioritizing alerts, and automating regulatory reporting (e.g.,
suspicious activity reports, SARs). This paper presents a comprehensive, scholarly treatment of Al for
AML: (1) a systematic problem formulation mapping AML tasks to ML objectives; (2) a detailed review
of modeling approaches (statistical baselines, supervised learning, unsupervised methods, graph-
based models, temporal sequence models, and hybrid systems); (3) mathematical formulations for core
tasks (anomaly scoring, link prediction, temporal point process modeling, and risk scoring); (4) an end-
to-end system architecture for production deployment with considerations for data engineering, latency,
model governance, auditability, human-in-the-loop triage, and regulatory reporting workflows; (5)
evaluation methodologies appropriate to highly imbalanced, non-stationary data (including offline
metrics, backtesting, and controlled trials); and (6) ethical, legal, and operational concerns such as
fairness, privacy, adversarial abuse, and interpretability. We include reproducible experiment blueprints,
recommended feature sets, and practical recommendations for staged adoption. The manuscript
synthesizes academic research and industry practice to deliver an actionable roadmap for institutions
seeking to modernize AML through Al while maintaining regulatory compliance and operational
resilience.
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transaction monitoring, regulatory reporting, suspicious activity reports (SAR), supervised learning,
unsupervised learning, compliance automation

1. Introduction

Money laundering and financial crime impose serious economic and societal harms, while regulators
worldwide require financial institutions to maintain effective AML programs, including transaction
monitoring, customer due diligence, and timely suspicious activity reporting. Historically, many AML
systems are rule-based: transaction rules based on thresholds (e.g., large cash deposits), velocity
rules, or typology triggers (Financial Action Task Force, FATF, guidance). Such systems generate large
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volumes of alerts with low precision, creating significant manual investigation overhead and the risk
that true suspicious activity is missed due to alert fatigue.

Artificial intelligence promises to improve AML by learning patterns from historical labeled cases,
detecting novel anomalies, and uncovering complex networked relationships (e.g., layering and
structuring across multiple accounts) that transcend simple rule thresholds. However, AML presents
distinctive technical and regulatory challenges: extremely high class imbalance (fraud/AML cases are
rare), evolving adversarial behavior, strict privacy and data-retention constraints, the need for auditable
explanations for regulatory filings, and legal requirements for timely reporting. This paper provides an
in-depth treatment of Al methods mapped to AML workflows, showing how models and systems can be
designed, validated, and governed to meet both technical performance and compliance obligations.

2. Problem Definition and AML Task Taxonomy
2.1 Core operational tasks in AML
We decompose AML into a set of operational tasks that Al can assist or automate:

1. Transaction monitoring & alert generation (real-time / near-real-time). Continuously analyze
streams of transactions to detect anomalous or policy-violating activity and generate case alerts
for investigation.

2. Network and link analysis. Identify suspicious clusters of accounts, beneficial owners, or
transaction paths indicative of money-laundering typologies (e.g., layering).

3. Customer risk scoring and segmentation. Maintain dynamic customer risk profiles using
transactional behavior and external data.

4. Case prioritization and triage. Rank alerts to focus human investigator effort where expected
value (true positive probability x potential harm) is greatest.

5. Regulatory reporting and SAR drafting. Assist or automate the preparation of Suspicious
Activity Reports (SARs) with auditable narratives and evidence.

6. Typology discovery and adaptive detection. Discover emerging patterns of abuse via
unsupervised learning and update detection rules/models.

2.2 Formalizing AML as machine learning problems
AML tasks map to several ML problem classes:

« Binary classification: label transactions or account-periods as suspicious or benign given
features; heavily imbalanced.

« Anomaly detection / novelty detection: learn normal behavior and flag deviations when
labeled examples are scarce.
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Link prediction / community detection: operate over transaction graphs to find suspicious
connections.

Temporal sequence modeling / point processes: model event arrival times and sequences
(e.g., sudden bursts of transfers).

Ranking / learning to rank: prioritize alerts or cases for investigation.

These tasks often interplay; for example, graph features (derived from network analysis) serve as inputs
to a supervised classifier or anomaly scorer.

3. Data Sources, Feature Engineering, and Data Quality

3.1 Data sources available to financial institutions

Core transaction data: deposits, withdrawals, transfers (payer/payee IDs, amounts,
timestamps, channels).

Customer data: KYC attributes, beneficial ownership, risk ratings.
Account metadata: account opening dates, product types, limits.

External data: sanctions lists, politically exposed persons (PEP) lists, adverse media, corporate
registries.

Case history: labeled SARs and investigator outcomes (true positives, false positives).

3.2 Feature engineering principles

Construct features at multiple levels:

Transaction-level features: amount, channel, country pair, merchant category code, time of
day, rounding patterns.

Aggregated statistics: moving averages, counts over sliding windows (e.g., last 24 hours, 30
days), standard deviation of amounts.

Behavioral features: recency, frequency, monetary (RFM), velocity indicators.

Network features: degree centrality, betweenness, PageRank, clustering coefficients,
connected component size, shortest path to sanctioned entities.

Graph motifs: counts of patterns (e.g., chains, loops) indicative of layering.

Temporal features: burstiness measures, inter-transaction intervals can be modeled via
Hawkes processes.

Derived features for explainability: textual templates for reasons (e.g., “rapid outbound
transfers to high-risk jurisdiction”).
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Quality considerations: canonicalization of entity IDs, robust handling of missing or inconsistent KYC
data, deduplication, and provenance tracking to enable audit trails.

3.3 Labeling and ground truth

Obtaining ground truth is challenging. Labels come from SARs and investigator outcomes, but these
are noisy (investigator decisions can be subjective) and often delayed. Practices to manage labeling
issues:

o Label propagation & weak supervision: combine multiple signals (rule triggers, external
matches) to create training labels with estimated noise.

o Active learning: focus investigator labeling effort on uncertain examples to improve model
training efficiency.

« Time-aware labeling: careful alignment of model training windows to avoid leakage (only use
information available at detection time).

4. Modeling Approaches

This section surveys ML methods applicable to AML, their mathematical formulations, strengths, and
limitations.

4.1 Statistical and rule-based baselines

Rule systems define Boolean conditions (e.g., amount > X AND country = Y) or thresholds on
engineered features. They are interpretable and simple to audit but have low precision and slow
adaptation to new typologies. Statistical baselines (e.g., z-score on log amounts) provide simple
anomaly flags.

4.2 Supervised learning

Supervised binary classification trains models y*=h6(x)€[0,1]\hat{y} = h_\theta(x) \in [0,1]y*=h8(x)€[0,1]
to predict the probability of suspiciousness. Common model families:

o Logistic regression / generalized linear models (GLMs): interpretable, fast; can integrate
with monotonic constraints for fairness.

« Tree ensembles (Random Forests, XGBoost, LightGBM): widely used for tabular data,
handle heterogenous features and interactions.

e Deep neural networks: feedforward MLPs and architectures for sequences/temporal
aggregation; require more data and careful calibration.

Loss functions and class imbalance: use weighted cross-entropy, focal loss, or resampling. Calibration
of predicted probabilities is important for downstream prioritization (Platt scaling, isotonic regression).
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Mathematical formulation (standard logistic):
Given labeled dataset {(xi,yi)}i=1TN\{(x_i, y_i)\} {i=1}*N{(xi,yi)}i=1N with yi€{0,1}y_i \in \{0,1\}yie{0,1},
minimize negative log-likelihood:

L(8)=->i=1N[yilogo(8Txi)+(1-yi)log(1-o(8Txi))]*+AlI6lI22.\mathcal{L}(\theta) = -\sum_{i=1}*N \big[y_i
\log \sigma(\theta™top x i) + (1-y_i\log(1-\sigma(\theta™top  x_i))\big] + \lambda
\|\theta\|_272.L(8)=-i=1) N[yilogo(BTxi)+(1-yi)log(1-c(BTxi))]+Al6I122.

4.3 Unsupervised and semi-supervised anomaly detection

When labeled data are scarce or unreliable, learning the distribution of normal behavior p(x)p(x)p(x)
and flagging low-probability observations is an approach.

Methods include:
« Density estimation: Gaussian mixture models, kernel density estimation.
e One-class SVMs: learn boundary of normal class.

« Autoencoders / Variational Autoencoders (VAE): reconstruct input; high reconstruction error
signals anomalies.

« Isolation Forests: randomly partition features and use path length as anomaly measure.

« Deep generative models (GANs) for anomaly detection: adversarial training to learn normal
data manifold.

Challenge: adversarial adaptation and evolving normal behavior; require continuous retraining and
concept drift detection.

4.4 Graph and relational learning

Money-laundering is inherently relational. Graph representations G=(V,E,A)G = (V, E, A)G=(V,E,A)
where nodes VVV are accounts or entities and edges EEE are transactions, enable powerful structural
detection.

Techniques:

« Feature extraction on graphs: compute centrality, motif counts, community features as inputs
to classifiers.

e Graph neural networks (GNNs): message-passing frameworks that learn node embeddings
capturing structural and attribute information (e.g., GraphSAGE, GAT). GNNs support both
node-level (flag an account) and edge-level (flag a transaction) predictions.

« Graph anomaly detection: models that detect anomalous subgraphs or unusual edge patterns.
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« Link prediction: estimate the likelihood of an edge becoming suspicious or connecting to high-

risk nodes.
Mathematical sketch (GNN message passing):
For node vvy, at layer |+11+1]+1:
hv(l+1)=UPDATE(hv(l),AGG({hu(l):ueN(v)})),h_vM(I+1)} = \mathsf{UPDATE}Big(h_v*{(l)},

\mathsf{AGG}\big({h_u™()}: u \in \mathcal{N}(v)\I\big)\Big),hv(I+1)=UPDATE(hv(I),AGG({hu(l)
:UeN(V)})),

with initial hv(0)=xvh_v*{(0)} = x_vhv(0)=xv.

GNNs can capture propagation patterns (e.g., sudden emergence of a hub receiving funds from many
nodes).

4.5 Temporal and sequence models
Temporal modeling captures behavioral evolution and scheduling patterns:

o Recurrent neural networks (RNNs), LSTMs, GRUs: model sequences of transactions for a
given account.

« Temporal point processes (e.g., Hawkes processes): model self-exciting behavior (bursts) in
transaction arrivals; useful for modeling cascading transfers.

« Temporal GNNs / dynamic graph embeddings: incorporate timing into graph representations.
4.6 Hybrid systems and ensembles
Combining models yields stronger performance and operational flexibility:

e Rule + ML hybrid: rules capture regulatory constraints while ML filters improve precision and
reduce false positives.

« Ensembles across model families: combine supervised classifier scores with anomaly
detectors and graph scores via stacking or weighted blending.

« Human-in-the-loop models: ML suggests alerts; investigators provide feedback that is used to
retrain and calibrate models (active learning).

5. Explainability and Regulatory Requirements

Regulatory compliance demands that decisions leading to SARs be auditable and explainable. For any
ML model used in AML:

« Feature-level explanations: which features triggered the alert (e.g., “account sent three rapid
outbound transfers to high-risk jurisdiction within 24 hours”)? Techniques: SHAP, LIME,
counterfactual explanations.
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Model provenance: versioned models, training data snapshots, and system logs.

Confidence and uncertainty quantification: present probability scores with calibrated
uncertainty intervals to inform investigators.

Template generation for SARs: extract evidence snippets (transactions, counterparties) and
provide an investigator with a coherent narrative.

Explainability methods must be validated for stability and fidelity; poor explanations can mislead
investigators and regulators.

6. Evaluation Metrics, Validation, and Backtesting

Evaluating AML systems requires careful design to reflect class imbalance and operational utility.

6.1 Offline evaluation metrics

Precision @ K: proportion of true positives among top-K alarms aligns with investigator
capacity.

Recall / detection rate: fraction of known suspicious cases detected.

Area Under Precision-Recall Curve (AUPRC): more informative than ROC AUC under severe
imbalance.

Calibration metrics: Brier score and reliability diagrams for probability outputs.

Cost-sensitive metrics: weighted loss reflecting investigation cost and cost of missed
detections (false negatives).

6.2 Backtesting and temporal validation

Use rolling origin evaluation with time windows to avoid leakage. Ensure models trained on data up to
time ttt are tested on t+1,...t+1,\dotst+1,...; this captures concept drift and shifting typologies.

6.3 Operational evaluation

Alert reduction ratio: how many alerts can be eliminated while preserving detection rate?
Time-to-detection: latency from suspicious activity to alert.
Investigator productivity: SARs filed per investigator per month; investigation throughput.

SAR quality metrics: proportion of SARs accepted by regulator (where such feedback exists).

6.4 Controlled trials and pilots
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Before enterprise rollout, run A/B tests or shadow mode pilots where ML alerts are scored but not acted
upon, with investigator labeling. Use these trials to estimate real operational impacts and avoid adverse
legal exposure.

7. System Design and Production Architecture

An operational Al-for-AML solution requires robust data engineering, ML lifecycle management, and
human workflows.

7.1 Ingest and streaming layer

o Real-time ingestion of transaction streams with entity resolution and enrichment (sanctions
check, geolocation).

o Use stream processing platforms (Kafka, Flink) for low latency.
7.2 Feature store and aggregation

« Time window aggregations (rolling counts, amounts) computed in streaming and materialized in
feature store for both online inference and offline training.

e Maintain audits of feature provenance.
7.3 Model training and deployment

« Offline training pipelines: batched retraining cadence (daily/weekly) with retraining triggers on
drift detection.

« Online serving: low-latency scoring for real-time alerts; batch scoring for periodic risk lists.

 Model governance: registries, CI/CD for models, automated validation tests (backtesting,
fairness tests).

7.4 Case management integration

o Integrate ML alerts into case management systems (investigator Ul), supporting triage, evidence
display, and SAR drafting with prefilled fields.

e Investigator feedback loops to capture labels (false positive/true positive) and reingest into
training pipeline.

7.5 Auditability and compliance

« Immutable logs of model inputs, outputs, model versions, and investigator actions for regulatory
audits.

« Data retention and deletion policies per legal requirements.

8. Privacy, Security, and Ethical Considerations
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AML systems process sensitive financial and personal data; privacy protection is essential.

Data minimization and encryption: only store necessary attributes; encrypt in transit and at
rest.

Access controls and role-based permissions for investigator and model operations.

Differential privacy techniques may be applied in federated learning contexts to share insights
across institutions without sharing raw data.

Fairness and non-discrimination: monitor for disparate impacts on protected groups (race,
nationality) e.g., over-flagging certain demographic segments due to proxy features.

Adversarial risks: actors may probe and manipulate detection systems; adopt adversarial
training and anomaly robustness testing.

9. Adversarial and Evolutionary Threats

Criminals adapt. AML models must be robust to evasion:

Evasion strategies: transaction splitting (smurfing), use of front companies, mixing services,
rapid account churn.

Countermeasures: detection of structuring patterns, graph motif surveillance, cross-product
correlations, and signals from external intelligence (law enforcement, shared industry data).

Collaborative industry initiatives (information sharing) can improve detection of cross-institution
laundering networks while respecting privacy and competitive concerns.

10. Case Studies and Example Workflows

10.1 Synthetic case: structuring detection with hybrid model

Feature set: sliding window counts, amount variance, destination country risk, new payee flag,
graph distance to sanctioned nodes.

Model: ensemble of autoencoder (anomaly score), Random Forest (supervised), and GNN node
embedding (network score).

Decision logic: weighted combination yields final risk score; if above threshold, create an
investigator case with top-3 contributing explanations (feature attributions) and key evidence
(transactions, counterparties).

10.2 SAR automation pilot

ML identifies high-probability cases; investigator reviews and uses prefilled SAR template with
suggested narrative and supporting transaction list. Investigator edits and files SAR; outcome
(filed/declined) stored as label for retraining.
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11. Implementation Roadmap and Organizational Change
Adopting Al in AML is not purely technical; organizational readiness is key:

1. Baseline assessment: inventory of data, rules, investigator capacity, and compliance
requirements.

2. Pilot stage: shadow mode pipelines, small-scale pilots focusing on specific product lines (e.g.,
wire transfers).

3. Governance and policy: assemble cross-functional team (compliance, legal, data science,
security). Define KPIs and escalation procedures.

4. Scaling: roll out to additional products and channels; integrate with case management.

5. Continuous improvement: ongoing retraining, concept drift monitoring, collaboration with law
enforcement and industry consortia for intelligence sharing.

Change management: training investigators on using ML outputs; transparency to compliance officers
and regulators.

12. Research Challenges and Future Directions
Key areas for future research:

o Label scarcity and transfer learning: methods for few-shot learning and transfer across
jurisdictions or product types.

o« Federated AML: privacy-preserving cross-institution models to detect networked criminal
activity without sharing raw data.

o Causal inference in AML: disentangling innocent correlated behavior from intentional
laundering.

« Explainable graph models: improving interpretability of GNNs for regulator-grade
explanations.

« Benchmarks and public datasets: creation of de-identified, realistic AML datasets for
reproducible research (while preserving privacy).

13. Conclusion

Al offers significant opportunities to improve AML effectiveness by reducing false positives, surfacing
complex networked patterns, and enabling prioritization of investigator attention. Careful engineering,
rigorous evaluation, strong model governance, and attention to legal and ethical constraints are
essential. Hybrid systems that combine interpretable rules, supervised learning, anomaly detection,
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and graph models integrated with human expertise present the most practical path forward for financial
institutions seeking to modernize AML while meeting regulatory obligations.
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