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Abstract  

Anti-Money Laundering (AML) detection is a critical regulatory and operational function for financial 
institutions. Traditional rule-based systems capture known typologies but produce high false positive 
rates, operational burden, and limited adaptive capacity against evolving threats. Recent advances in 
artificial intelligence (AI) and machine learning (ML) including supervised classifiers, unsupervised 
anomaly detection, graph learning, and explainable AI (XAI) provide the potential to transform AML 
operations: improving detection quality, prioritizing alerts, and automating regulatory reporting (e.g., 
suspicious activity reports, SARs). This paper presents a comprehensive, scholarly treatment of AI for 
AML: (1) a systematic problem formulation mapping AML tasks to ML objectives; (2) a detailed review 
of modeling approaches (statistical baselines, supervised learning, unsupervised methods, graph-
based models, temporal sequence models, and hybrid systems); (3) mathematical formulations for core 
tasks (anomaly scoring, link prediction, temporal point process modeling, and risk scoring); (4) an end-
to-end system architecture for production deployment with considerations for data engineering, latency, 
model governance, auditability, human-in-the-loop triage, and regulatory reporting workflows; (5) 
evaluation methodologies appropriate to highly imbalanced, non-stationary data (including offline 
metrics, backtesting, and controlled trials); and (6) ethical, legal, and operational concerns such as 
fairness, privacy, adversarial abuse, and interpretability. We include reproducible experiment blueprints, 
recommended feature sets, and practical recommendations for staged adoption. The manuscript 
synthesizes academic research and industry practice to deliver an actionable roadmap for institutions 
seeking to modernize AML through AI while maintaining regulatory compliance and operational 
resilience. 
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1. Introduction 

Money laundering and financial crime impose serious economic and societal harms, while regulators 
worldwide require financial institutions to maintain effective AML programs, including transaction 
monitoring, customer due diligence, and timely suspicious activity reporting. Historically, many AML 
systems are rule-based: transaction rules based on thresholds (e.g., large cash deposits), velocity 
rules, or typology triggers (Financial Action Task Force, FATF, guidance). Such systems generate large 
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volumes of alerts with low precision, creating significant manual investigation overhead and the risk 
that true suspicious activity is missed due to alert fatigue. 

Artificial intelligence promises to improve AML by learning patterns from historical labeled cases, 
detecting novel anomalies, and uncovering complex networked relationships (e.g., layering and 
structuring across multiple accounts) that transcend simple rule thresholds. However, AML presents 
distinctive technical and regulatory challenges: extremely high class imbalance (fraud/AML cases are 
rare), evolving adversarial behavior, strict privacy and data-retention constraints, the need for auditable 
explanations for regulatory filings, and legal requirements for timely reporting. This paper provides an 
in-depth treatment of AI methods mapped to AML workflows, showing how models and systems can be 
designed, validated, and governed to meet both technical performance and compliance obligations. 

2. Problem Definition and AML Task Taxonomy 

2.1 Core operational tasks in AML 

We decompose AML into a set of operational tasks that AI can assist or automate: 

1. Transaction monitoring & alert generation (real-time / near-real-time). Continuously analyze 
streams of transactions to detect anomalous or policy-violating activity and generate case alerts 
for investigation. 

2. Network and link analysis. Identify suspicious clusters of accounts, beneficial owners, or 
transaction paths indicative of money-laundering typologies (e.g., layering). 

3. Customer risk scoring and segmentation. Maintain dynamic customer risk profiles using 
transactional behavior and external data. 

4. Case prioritization and triage. Rank alerts to focus human investigator effort where expected 
value (true positive probability × potential harm) is greatest. 

5. Regulatory reporting and SAR drafting. Assist or automate the preparation of Suspicious 
Activity Reports (SARs) with auditable narratives and evidence. 

6. Typology discovery and adaptive detection. Discover emerging patterns of abuse via 
unsupervised learning and update detection rules/models. 

2.2 Formalizing AML as machine learning problems 

AML tasks map to several ML problem classes: 

 Binary classification: label transactions or account-periods as suspicious or benign given 
features; heavily imbalanced. 

 Anomaly detection / novelty detection: learn normal behavior and flag deviations when 
labeled examples are scarce. 
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 Link prediction / community detection: operate over transaction graphs to find suspicious 
connections. 

 Temporal sequence modeling / point processes: model event arrival times and sequences 
(e.g., sudden bursts of transfers). 

 Ranking / learning to rank: prioritize alerts or cases for investigation. 

These tasks often interplay; for example, graph features (derived from network analysis) serve as inputs 
to a supervised classifier or anomaly scorer. 

3. Data Sources, Feature Engineering, and Data Quality 

3.1 Data sources available to financial institutions 

 Core transaction data: deposits, withdrawals, transfers (payer/payee IDs, amounts, 
timestamps, channels). 

 Customer data: KYC attributes, beneficial ownership, risk ratings. 

 Account metadata: account opening dates, product types, limits. 

 External data: sanctions lists, politically exposed persons (PEP) lists, adverse media, corporate 
registries. 

 Case history: labeled SARs and investigator outcomes (true positives, false positives). 

3.2 Feature engineering principles 

Construct features at multiple levels: 

 Transaction-level features: amount, channel, country pair, merchant category code, time of 
day, rounding patterns. 

 Aggregated statistics: moving averages, counts over sliding windows (e.g., last 24 hours, 30 
days), standard deviation of amounts. 

 Behavioral features: recency, frequency, monetary (RFM), velocity indicators. 

 Network features: degree centrality, betweenness, PageRank, clustering coefficients, 
connected component size, shortest path to sanctioned entities. 

 Graph motifs: counts of patterns (e.g., chains, loops) indicative of layering. 

 Temporal features: burstiness measures, inter-transaction intervals  can be modeled via 
Hawkes processes. 

 Derived features for explainability: textual templates for reasons (e.g., “rapid outbound 
transfers to high-risk jurisdiction”). 
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Quality considerations: canonicalization of entity IDs, robust handling of missing or inconsistent KYC 
data, deduplication, and provenance tracking to enable audit trails. 

3.3 Labeling and ground truth 

Obtaining ground truth is challenging. Labels come from SARs and investigator outcomes, but these 
are noisy (investigator decisions can be subjective) and often delayed. Practices to manage labeling 
issues: 

 Label propagation & weak supervision: combine multiple signals (rule triggers, external 
matches) to create training labels with estimated noise. 

 Active learning: focus investigator labeling effort on uncertain examples to improve model 
training efficiency. 

 Time-aware labeling: careful alignment of model training windows to avoid leakage (only use 
information available at detection time). 

4. Modeling Approaches 

This section surveys ML methods applicable to AML, their mathematical formulations, strengths, and 
limitations. 

4.1 Statistical and rule-based baselines 

Rule systems define Boolean conditions (e.g., amount > X AND country = Y) or thresholds on 
engineered features. They are interpretable and simple to audit but have low precision and slow 
adaptation to new typologies. Statistical baselines (e.g., z-score on log amounts) provide simple 
anomaly flags. 

4.2 Supervised learning 

Supervised binary classification trains models y^=hθ(x)∈[0,1]\hat{y} = h_\theta(x) \in [0,1]y^=hθ(x)∈[0,1] 
to predict the probability of suspiciousness. Common model families: 

 Logistic regression / generalized linear models (GLMs): interpretable, fast; can integrate 
with monotonic constraints for fairness. 

 Tree ensembles (Random Forests, XGBoost, LightGBM): widely used for tabular data, 
handle heterogenous features and interactions. 

 Deep neural networks: feedforward MLPs and architectures for sequences/temporal 
aggregation; require more data and careful calibration. 

Loss functions and class imbalance: use weighted cross-entropy, focal loss, or resampling. Calibration 
of predicted probabilities is important for downstream prioritization (Platt scaling, isotonic regression). 
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Mathematical formulation (standard logistic): 
Given labeled dataset {(xi,yi)}i=1N\{(x_i, y_i)\}_{i=1}^N{(xi,yi)}i=1N with yi∈{0,1}y_i \in \{0,1\}yi∈{0,1}, 
minimize negative log-likelihood: 

L(θ)=−∑i=1N[yilog σ(θ⊤xi)+(1−yi)log (1−σ(θ⊤xi))]+λ∥θ∥22.\mathcal{L}(\theta) = -\sum_{i=1}^N \big[y_i 
\log \sigma(\theta^\top x_i) + (1-y_i)\log(1-\sigma(\theta^\top x_i))\big] + \lambda 
\|\theta\|_2^2.L(θ)=−i=1∑N[yilogσ(θ⊤xi)+(1−yi)log(1−σ(θ⊤xi))]+λ∥θ∥22.  

4.3 Unsupervised and semi-supervised anomaly detection 

When labeled data are scarce or unreliable, learning the distribution of normal behavior p(x)p(x)p(x) 
and flagging low-probability observations is an approach. 

Methods include: 

 Density estimation: Gaussian mixture models, kernel density estimation. 

 One-class SVMs: learn boundary of normal class. 

 Autoencoders / Variational Autoencoders (VAE): reconstruct input; high reconstruction error 
signals anomalies. 

 Isolation Forests: randomly partition features and use path length as anomaly measure. 

 Deep generative models (GANs) for anomaly detection: adversarial training to learn normal 
data manifold. 

Challenge: adversarial adaptation and evolving normal behavior; require continuous retraining and 
concept drift detection. 

4.4 Graph and relational learning 

Money-laundering is inherently relational. Graph representations G=(V,E,A)G = (V, E, A)G=(V,E,A) 
where nodes VVV are accounts or entities and edges EEE are transactions, enable powerful structural 
detection. 

Techniques: 

 Feature extraction on graphs: compute centrality, motif counts, community features as inputs 
to classifiers. 

 Graph neural networks (GNNs): message-passing frameworks that learn node embeddings 
capturing structural and attribute information (e.g., GraphSAGE, GAT). GNNs support both 
node-level (flag an account) and edge-level (flag a transaction) predictions. 

 Graph anomaly detection: models that detect anomalous subgraphs or unusual edge patterns. 
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 Link prediction: estimate the likelihood of an edge becoming suspicious or connecting to high-
risk nodes. 

Mathematical sketch (GNN message passing): 
For node vvv, at layer l+1l+1l+1: 

hv(l+1)=UPDATE(hv(l),AGG({hu(l):u∈N(v)})),h_v^{(l+1)} = \mathsf{UPDATE}\Big(h_v^{(l)}, 
\mathsf{AGG}\big(\{h_u^{(l)}: u \in \mathcal{N}(v)\}\big)\Big),hv(l+1)=UPDATE(hv(l),AGG({hu(l)
:u∈N(v)})),  

with initial hv(0)=xvh_v^{(0)} = x_vhv(0)=xv. 

GNNs can capture propagation patterns (e.g., sudden emergence of a hub receiving funds from many 
nodes). 

4.5 Temporal and sequence models 

Temporal modeling captures behavioral evolution and scheduling patterns: 

 Recurrent neural networks (RNNs), LSTMs, GRUs: model sequences of transactions for a 
given account. 

 Temporal point processes (e.g., Hawkes processes): model self-exciting behavior (bursts) in 
transaction arrivals; useful for modeling cascading transfers. 

 Temporal GNNs / dynamic graph embeddings: incorporate timing into graph representations. 

4.6 Hybrid systems and ensembles 

Combining models yields stronger performance and operational flexibility: 

 Rule + ML hybrid: rules capture regulatory constraints while ML filters improve precision and 
reduce false positives. 

 Ensembles across model families: combine supervised classifier scores with anomaly 
detectors and graph scores via stacking or weighted blending. 

 Human-in-the-loop models: ML suggests alerts; investigators provide feedback that is used to 
retrain and calibrate models (active learning). 

5. Explainability and Regulatory Requirements 

Regulatory compliance demands that decisions leading to SARs be auditable and explainable. For any 
ML model used in AML: 

 Feature-level explanations: which features triggered the alert (e.g., “account sent three rapid 
outbound transfers to high-risk jurisdiction within 24 hours”)? Techniques: SHAP, LIME, 
counterfactual explanations. 
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 Model provenance: versioned models, training data snapshots, and system logs. 

 Confidence and uncertainty quantification: present probability scores with calibrated 
uncertainty intervals to inform investigators. 

 Template generation for SARs: extract evidence snippets (transactions, counterparties) and 
provide an investigator with a coherent narrative. 

Explainability methods must be validated for stability and fidelity; poor explanations can mislead 
investigators and regulators. 

6. Evaluation Metrics, Validation, and Backtesting 

Evaluating AML systems requires careful design to reflect class imbalance and operational utility. 

6.1 Offline evaluation metrics 

 Precision @ K: proportion of true positives among top-K alarms  aligns with investigator 
capacity. 

 Recall / detection rate: fraction of known suspicious cases detected. 

 Area Under Precision-Recall Curve (AUPRC): more informative than ROC AUC under severe 
imbalance. 

 Calibration metrics: Brier score and reliability diagrams for probability outputs. 

 Cost-sensitive metrics: weighted loss reflecting investigation cost and cost of missed 
detections (false negatives). 

6.2 Backtesting and temporal validation 

Use rolling origin evaluation with time windows to avoid leakage. Ensure models trained on data up to 
time ttt are tested on t+1,…t+1,\dotst+1,…; this captures concept drift and shifting typologies. 

6.3 Operational evaluation 

 Alert reduction ratio: how many alerts can be eliminated while preserving detection rate? 

 Time-to-detection: latency from suspicious activity to alert. 

 Investigator productivity: SARs filed per investigator per month; investigation throughput. 

 SAR quality metrics: proportion of SARs accepted by regulator (where such feedback exists). 

6.4 Controlled trials and pilots 
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Before enterprise rollout, run A/B tests or shadow mode pilots where ML alerts are scored but not acted 
upon, with investigator labeling. Use these trials to estimate real operational impacts and avoid adverse 
legal exposure. 

7. System Design and Production Architecture 

An operational AI-for-AML solution requires robust data engineering, ML lifecycle management, and 
human workflows. 

7.1 Ingest and streaming layer 

 Real-time ingestion of transaction streams with entity resolution and enrichment (sanctions 
check, geolocation). 

 Use stream processing platforms (Kafka, Flink) for low latency. 

7.2 Feature store and aggregation 

 Time window aggregations (rolling counts, amounts) computed in streaming and materialized in 
feature store for both online inference and offline training. 

 Maintain audits of feature provenance. 

7.3 Model training and deployment 

 Offline training pipelines: batched retraining cadence (daily/weekly) with retraining triggers on 
drift detection. 

 Online serving: low-latency scoring for real-time alerts; batch scoring for periodic risk lists. 

 Model governance: registries, CI/CD for models, automated validation tests (backtesting, 
fairness tests). 

7.4 Case management integration 

 Integrate ML alerts into case management systems (investigator UI), supporting triage, evidence 
display, and SAR drafting with prefilled fields. 

 Investigator feedback loops to capture labels (false positive/true positive) and reingest into 
training pipeline. 

7.5 Auditability and compliance 

 Immutable logs of model inputs, outputs, model versions, and investigator actions for regulatory 
audits. 

 Data retention and deletion policies per legal requirements. 

8. Privacy, Security, and Ethical Considerations 



P a g e  | 9 
 
 

 
 
Robotics, Autonomous, Machine Learning, and Artificial intelligence Journal                     (Volume, IV, Issue III, 2025) 

AML systems process sensitive financial and personal data; privacy protection is essential. 

 Data minimization and encryption: only store necessary attributes; encrypt in transit and at 
rest. 

 Access controls and role-based permissions for investigator and model operations. 

 Differential privacy techniques may be applied in federated learning contexts to share insights 
across institutions without sharing raw data. 

 Fairness and non-discrimination: monitor for disparate impacts on protected groups (race, 
nationality)  e.g., over-flagging certain demographic segments due to proxy features. 

 Adversarial risks: actors may probe and manipulate detection systems; adopt adversarial 
training and anomaly robustness testing. 

9. Adversarial and Evolutionary Threats 

Criminals adapt. AML models must be robust to evasion: 

 Evasion strategies: transaction splitting (smurfing), use of front companies, mixing services, 
rapid account churn. 

 Countermeasures: detection of structuring patterns, graph motif surveillance, cross-product 
correlations, and signals from external intelligence (law enforcement, shared industry data). 

Collaborative industry initiatives (information sharing) can improve detection of cross-institution 
laundering networks while respecting privacy and competitive concerns. 

10. Case Studies and Example Workflows 

10.1 Synthetic case: structuring detection with hybrid model 

 Feature set: sliding window counts, amount variance, destination country risk, new payee flag, 
graph distance to sanctioned nodes. 

 Model: ensemble of autoencoder (anomaly score), Random Forest (supervised), and GNN node 
embedding (network score). 

 Decision logic: weighted combination yields final risk score; if above threshold, create an 
investigator case with top-3 contributing explanations (feature attributions) and key evidence 
(transactions, counterparties). 

10.2 SAR automation pilot 

 ML identifies high-probability cases; investigator reviews and uses prefilled SAR template with 
suggested narrative and supporting transaction list. Investigator edits and files SAR; outcome 
(filed/declined) stored as label for retraining. 
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11. Implementation Roadmap and Organizational Change 

Adopting AI in AML is not purely technical; organizational readiness is key: 

1. Baseline assessment: inventory of data, rules, investigator capacity, and compliance 
requirements. 

2. Pilot stage: shadow mode pipelines, small-scale pilots focusing on specific product lines (e.g., 
wire transfers). 

3. Governance and policy: assemble cross-functional team (compliance, legal, data science, 
security). Define KPIs and escalation procedures. 

4. Scaling: roll out to additional products and channels; integrate with case management. 

5. Continuous improvement: ongoing retraining, concept drift monitoring, collaboration with law 
enforcement and industry consortia for intelligence sharing. 

Change management: training investigators on using ML outputs; transparency to compliance officers 
and regulators. 

12. Research Challenges and Future Directions 

Key areas for future research: 

 Label scarcity and transfer learning: methods for few-shot learning and transfer across 
jurisdictions or product types. 

 Federated AML: privacy-preserving cross-institution models to detect networked criminal 
activity without sharing raw data. 

 Causal inference in AML: disentangling innocent correlated behavior from intentional 
laundering. 

 Explainable graph models: improving interpretability of GNNs for regulator-grade 
explanations. 

 Benchmarks and public datasets: creation of de-identified, realistic AML datasets for 
reproducible research (while preserving privacy). 

13. Conclusion 

AI offers significant opportunities to improve AML effectiveness by reducing false positives, surfacing 
complex networked patterns, and enabling prioritization of investigator attention. Careful engineering, 
rigorous evaluation, strong model governance, and attention to legal and ethical constraints are 
essential. Hybrid systems that combine interpretable rules, supervised learning, anomaly detection, 
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and graph models  integrated with human expertise  present the most practical path forward for financial 
institutions seeking to modernize AML while meeting regulatory obligations. 
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