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Abstract 

Personalized recommendation systems are central to modern e-commerce, driving customer 
engagement, conversion, and lifetime value. Traditional collaborative filtering and supervised deep 
learning methods excel at modeling historical preferences but struggle with sequential decision-making, 
long-term user objectives, and incorporating unstructured textual signals from reviews and queries. 
This paper proposes a hybrid architecture combining reinforcement learning (RL) for sequential, long-
horizon personalization and advanced natural language processing (NLP) for rich representation of 
items and user intents. We present: (1) a unified problem formulation that models recommendation as 
a Markov decision process with language-enhanced state representations; (2) a modular hybrid 
architecture combining a transformer-based encoder for text and context, a value-based RL policy for 
slate recommendation, and a policy-improvement module guided by counterfactual learning; (3) 
mathematical derivations for objective functions, off-policy correction, and gradient estimators; (4) an 
evaluation framework addressing online and offline evaluation, bias and variance of estimators, and 
clinical business KPIs; and (5) an implementation roadmap for production deployment in cloud 
environments with privacy-preserving and latency-aware design choices. Extensive discussion 
synthesizes recent literature from deep recommendation, RL for recommender systems, and NLP for 
retrieval and ranking. We provide reproducible experimental blueprints, dataset recommendations, and 
metrics that align engineering objectives with business outcomes. The hybrid strategy balances 
immediate utility with learning for long-term customer satisfaction, and addresses common production 
concerns including scalability, safety, and interpretability. 

Keywords: recommendation systems, reinforcement learning, natural language processing, hybrid 
models, sequential recommendation, contextual bandits, counterfactual evaluation, personalization, e-
commerce 

1. Introduction 

E-commerce recommendation systems aim to present the right products to the right user at the right 
time. Historically, approaches such as collaborative filtering and matrix factorization have been 
successful at modeling static preferences (Koren, Bell, & Volinsky, 2009; Ricci, Rokach, & Shapira, 
2015). However, several practical challenges motivate rethinking recommender architectures: 
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1. Sequential decision-making: user interactions unfold over sessions and lifetimes; actions now 
influence future behavior (Shani & Gunawardana, 2011). 

2. Rich unstructured signals: product descriptions, user reviews, and natural-language search 
queries carry important signals not captured by categorical features alone (Mikolov et al., 2013; 
Devlin et al., 2019). 

3. Trade-offs between short-term metrics and long-term value: naive greedy optimization can 
increase immediate clicks while reducing retention or lifetime value (Jiang et al., 2017). 

4. Off-policy learning and offline evaluation constraints: production data is collected under 
existing policies, causing bias that must be addressed when training new policies offline 
(Swaminathan & Joachims, 2015). 

Reinforcement learning (RL) directly addresses sequential decision-making by optimizing long-term 
cumulative reward (Fatunmbi, 2021). Meanwhile, modern natural language processing (NLP) methods 
especially transformer architectures provide powerful encoders for textual product and user signals 
(Vaswani et al., 2017; Devlin et al., 2019). A hybrid approach that leverages RL for policy learning and 
NLP for representation can improve personalization while respecting business constraints. 

This manuscript develops such a hybrid framework, grounding it in theory, practical considerations, 
evaluation protocols, and production concerns. We review related work, formulate the problem 
mathematically, propose architecture design patterns, and detail evaluation and deployment steps. 

2. Literature Review 

This section synthesizes three intertwined literature streams: classical and deep recommender 
systems, RL for recommender systems, and NLP for representation and intent modeling. 

2.1 Classical and deep recommendation approaches 

Collaborative filtering and matrix factorization models (Koren et al., 2009) form the historical backbone 
for recommenders. Implicit-feedback models such as Bayesian Personalized Ranking (BPR) (Rendle 
et al., 2009) and weighted matrix factorization (Hu, Koren, & Volinsky, 2008) addressed binary 
feedback. More recently, neural collaborative filtering and multi-modal deep recommenders incorporate 
non-linear interactions and content features (He et al., 2017; Covington, Adams, & Sargin, 2016). 
Sequential recommenders using recurrent or self-attention models (GRU4Rec; Hidasi et al., 2015; 
SASRec; Kang & McAuley, 2018) handle session-level dynamics. 

2.2 Reinforcement learning in recommender systems 

RL reframes recommendation as a sequential decision problem, optimizing cumulative reward (Shani 
& Gunawardana, 2011; Zhao et al., 2018). Approaches span contextual bandits for immediate reward 
maximization (Li et al., 2010), to full-model MDP approaches using value-based (DQN) and policy-
gradient (REINFORCE, actor-critic) algorithms adapted to recommendation (Li et al., 2010; Zhao et al., 
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2018). Recent works address slate recommendations selecting a set of items per decision using 
combinatorial bandits and RL (Ie et al., 2019; Liang et al., 2018). Off-policy evaluation and 
counterfactual learning for recommender systems (Swaminathan & Joachims, 2015; Kallus & Uehara, 
2019) are essential for safe offline policy learning. 

2.3 Natural language processing for recommendation 

NLP enriches item and query representations. Word embeddings and item embeddings trained with 
skip-gram or doc2vec provided early improvements (Mikolov et al., 2013). Transformer models 
(Fatunmbi, 2022), further refined for retrieval and ranking (BERT; Devlin et al., 2019), empower 
contextualized representation learning for product titles, descriptions, and reviews. Recent 
recommender work unifies transformers with user behavior sequences (Sun et al., 2019; Kang & 
McAuley, 2018) and utilizes pretraining + fine-tuning strategies (Ying et al., 2020). 

2.4 Hybrid approaches and production systems 

Industry systems often adopt hybrid pipelines combining candidate generation (collaborative, content-
based), re-ranking (learning-to-rank), and business rules (Covington et al., 2016). RL-enhanced 
systems have been piloted for lifetime value and promotion allocation (Zheng et al., 2018). Further, 
explainability, fairness, and privacy have grown as engineering and regulatory constraints (Zhang & 
Chen, 2020). 

This manuscript integrates insights from these literatures to design an RL+NLP hybrid recommender 
suitable for large-scale e-commerce deployments. 

3. Problem Formulation 

We formalize recommendation as a sequential decision process with language-enriched states. 

3.1 Markov Decision Process (MDP) formulation 

Define an MDP M=(S,A,P,r,γ)\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)M=(S,A,P,r,γ): 

 S\mathcal{S}S is the state space representing user context: browsing history, user profile, 
session features, and language signals (search query, textual reviews); states are high-
dimensional. 

 A\mathcal{A}A is the (possibly combinatorial) action space: recommending a slate 
at=(i1,…,ik)a_t = (i_1, \dots, i_k)at=(i1,…,ik) of k items chosen from a catalog I\mathcal{I}I. 

 P(st+1∣st,at)P(s_{t+1}\mid s_t, a_t)P(st+1∣st,at) is the (unknown) transition dynamics modeling 
user evolution. 

 rt=r(st,at)r_t = r(s_t, a_t)rt=r(st,at) is the reward reflecting business objectives (clicks, purchases, 
revenue, retention). 
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 γ∈[0,1)\gamma \in [0,1)γ∈[0,1) is the discount factor capturing long-term value. 

The policy πθ(a∣s)\pi_\theta(a\mid s)πθ(a∣s) is parameterized and learned to maximize expected 
cumulative discounted reward: 

J(θ)=Eπθ[∑t=0∞γtrt].J(\theta) = \mathbb{E}_{\pi_\theta}\Big[ \sum_{t=0}^\infty \gamma^t r_t 
\Big].J(θ)=Eπθ[t=0∑∞γtrt].  

3.2 Language-enriched state representation 

Let textual signals TTT include product descriptions, user queries, and reviews. A neural encoder 
Φψ\Phi_\psiΦψ (transformer) maps these into dense vectors: 

et=Φψ(Tt),e_t = \Phi_\psi(T_t),et=Φψ(Tt),  

and the full state is st={ht,et,u}s_t = \{h_t, e_t, u\}st={ht,et,u} where hth_tht is behavioral history 
embedding and uuu is static user profile. 

3.3 Slate selection and combinatorics 

Selecting slates introduces combinatorial complexity. We model slate construction as sequential 
selection conditioned on the state or via parameterized score models with top-k extraction and a 
differentiable re-ranking module for end-to-end learning. 

4. Hybrid Architecture 

Our architecture has three interacting modules: (A) Representation & Candidate Generator (NLP + 
classical), (B) RL Policy (Slate-level decision-maker), and (C) Counterfactual / Risk Correction & 
Offline Learner. 

4.1 Module A Representation & Candidate Generator 

 NLP Encoder: a pretrained transformer (e.g., BERT-style) fine-tuned to produce contextual 
embeddings for queries and item text. The encoder outputs product embeddings viv_ivi and 
query/user embeddings qtq_tqt. 

 Candidate generation: uses a blend of collaborative retrieval (approximate nearest neighbors 
over embedding space), content filtering (text similarity), and popularity heuristics to produce a 
candidate set Ct⊂IC_t \subset \mathcal{I}Ct⊂I of manageable size mmm. 

4.2 Module B RL Policy & Slate Constructor 

 State encoder: fuses historical sequential embedding (e.g., self-attention on past item 
embeddings) with language embedding qtq_tqt via a multi-headed attention module to produce 
state vector sts_tst. 

 Policy backbone: two design options: 
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1. Value-based: Q-network Qθ(s,a)Q_\theta(s,a)Qθ(s,a) estimating expected return for 
candidate slates. Approximated by scoring individual items then applying a differentiable 
top-k/softmax to propose slate (e.g., DQN with dueling architecture adapted to slates). 

2. Policy gradient / Actor-critic: Actor πθ(a∣s)\pi_\theta(a\mid s)πθ(a∣s) sequentially 
samples items for slate; Critic Vw(s)V_w(s)Vw(s) provides baseline for variance reduction 
(A2C/PPO style). 

 Slate-level re-ranking: a reranker network that considers inter-item complementarity and 
diversity, trained with RL reward signals. 

4.3 Module C Counterfactual Risk & Offline Learning 

 Inverse Propensity Scoring (IPS) and Doubly Robust (DR) estimators correct for logging 
policy bias during offline training (Swaminathan & Joachims, 2015). 

 Constrained policy optimization: uses offline risk bounds to ensure the new policy does not 
degrade key business metrics when deployed (Kallus & Uehara, 2019). 

 Safety layer: rule-based guard rails (business constraints, fairness filters) applied before 
serving. 

5. Mathematical Details 

We present formal objectives, estimators, and gradient expressions for the hybrid model. 

5.1 Policy gradient for slate selection 

Let πθ(a∣s)\pi_\theta(a\mid s)πθ(a∣s) be the stochastic policy over slates. The policy gradient objective: 

∇θJ(θ)=Eπθ[∑t∇θlog πθ(at∣st)ௗGt],\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}\Big[ \sum_{t} 
\nabla_\theta \log\pi_\theta(a_t\mid s_t)\, G_t \Big],∇θJ(θ)=Eπθ[t∑∇θlogπθ(at∣st)Gt],  

where Gt=∑k=0∞γkrt+kG_t = \sum_{k=0}^\infty \gamma^k r_{t+k}Gt=∑k=0∞γkrt+k. Practically, use 
advantage estimates A^t=Gt−Vw(st)\hat{A}_t = G_t - V_w(s_t)A^t=Gt−Vw(st) with an actor-critic 
algorithm to reduce variance (Sutton & Barto, 2018). 

5.2 Off-policy correction: IPS & Doubly Robust estimators 

Given logged data D={(si,ai,ri,pi)}\mathcal{D} = \{(s_i, a_i, r_i, p_i)\}D={(si,ai,ri,pi)}, where pip_ipi is the 
logging policy probability of action aia_iai, the IPS estimate of expected reward under target policy 
π\piπ is: 

V^IPS(π)=1N∑i=1Nπ(ai∣si)piri.\hat{V}_{\text{IPS}}(\pi) = \frac{1}{N}\sum_{i=1}^N \frac{\pi(a_i\mid 
s_i)}{p_i} r_i.V^IPS(π)=N1i=1∑Npiπ(ai∣si)ri.  

Doubly robust (DR) estimator combines IPS with a reward model r^(s,a)\hat{r}(s,a)r^(s,a): 
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V^DR(π)=1N∑i=1N[r^(si,π)+π(ai∣si)pi(ri−r^(si,ai))].\hat{V}_{\text{DR}}(\pi) = \frac{1}{N}\sum_{i=1}^N 
\Big[ \hat{r}(s_i, \pi) + \frac{\pi(a_i\mid s_i)}{p_i} \big( r_i - \hat{r}(s_i,a_i) \big) \Big].V^DR(π)=N1i=1∑N
[r^(si,π)+piπ(ai∣si)(ri−r^(si,ai))].  

DR reduces bias and variance under model misspecification (Dudík et al., 2011; Swaminathan & 
Joachims, 2015). 

5.3 Counterfactual policy optimization 

We optimize: 

max θ  V^DR(πθ)−λௗReg(πθ),\max_{\theta} \; \hat{V}_{\text{DR}}(\pi_\theta) - \lambda \, 
\text{Reg}(\pi_\theta),θmaxV^DR(πθ)−λReg(πθ),  

where Reg\text{Reg}Reg enforces constraints (e.g., propensity regularization, exposure fairness). 
Gradients of V^DR\hat{V}_{\text{DR}}V^DR with respect to θ\thetaθ can be estimated using 
reparameterization (where possible) or score-function estimators with baseline subtraction. 

5.4 Representation learning objective (NLP encoder fine-tuning) 

Transformer encoder parameters ψ\psiψ are fine-tuned by multi-task objectives: masked language 
modeling (if pretraining continued), supervised title→category classification, and contrastive losses 
aligning query and item embeddings: 

Lcontrast=−1B∑i=1Blog exp (qi⊤vi/τ)∑j=1Bexp (qi⊤vj/τ).\mathcal{L}_{\text{contrast}} = -
\frac{1}{B}\sum_{i=1}^{B} \log \frac{\exp(q_i^\top v_i / \tau)}{\sum_{j=1}^{B} \exp(q_i^\top v_j / 
\tau)}.Lcontrast=−B1i=1∑Blog∑j=1Bexp(qi⊤vj/τ)exp(qi⊤vi/τ).  

Joint training with RL is handled via alternating updates or by treating encoder as part of the policy net 
and backpropagating RL gradients caution required due to sparse reward signals, so pretraining is 
recommended. 

6. Training and Optimization Strategies 

6.1 Pretraining then RL fine-tuning 

1. Pretrain item and user encoders with supervised and self-supervised tasks (click prediction, 
masked language modeling, contrastive learning). 

2. Candidate generator training: learn retrieval models using approximate nearest neighbor over 
learned embeddings. 

3. Offline RL: use logged bandit feedback and counterfactual estimators to update policy. Use 
behavior cloning (supervised) initialization to stabilize learning. 

4. Safe online exploration: implement conservative policy updates (trust region or KL constraints) 
and A/B testing in canary cohorts. 
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6.2 Sample efficiency and replay buffers 

Leverage experience replay adapted for non-stationary user populations; prioritize recent experiences 
while maintaining long-term diversity. 

6.3 Scalability and distributed training 

Scale via distributed data-parallel parameter servers for encoder and policy networks; use approximate 
search indices for candidate retrieval. For real-time serving, deploy encoder and policy on low-latency 
inference paths; heavy retraining runs in offline clusters. 

7. Evaluation Framework 

A rigorous evaluation strategy combines offline counterfactual evaluation, simulation-based evaluation, 
and staged online experiments. 

7.1 Offline evaluation 

 Metrics: expected reward (IPS/DR), normalized discounted cumulative gain (nDCG), 
precision@k, recall@k, diversity (intra-list diversity), calibration, and long-term metrics estimated 
via model-based simulation. 

 Bias control: report variance and confidence intervals of off-policy estimators; perform 
sensitivity analyses to propensity estimation errors. 

7.2 Simulation and user models 

Construct user simulators trained on logged data to assess long-term effects, retention, and multi-step 
consequences of policy changes. Models range from simple parametric dynamics to recurrent neural 
user simulators. 

7.3 Online evaluation 

 Canary experiments: constrained rollout in small user segments. 

 A/B testing: measure short-term KPIs and track long-term cohorts. Use sequential testing 
procedures to control false discovery rates. 

8. Datasets and Experimental Blueprints 

We recommend several public datasets for reproducible work and propose experimental setups: 

8.1 Candidate datasets 

 Retail-structured datasets: Amazon review datasets (product metadata + reviews) for large-
scale offline experiments. 
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 Session datasets: RetailRocket, RecSys Challenge datasets for session-based sequential 
experiments. 

 Search and query logs: where available, to evaluate query-conditioned recommendations. 

When using reviews and descriptions, ensure text preprocessing, tokenization consistent with encoder 
choices, and split data at the user level to avoid leakage. 

8.2 Experimental protocol examples 

Experiment 1: Short-horizon value optimization 

 Candidate generator produces 50 items. 

 RL policy trained to optimize immediate purchase probability (high discounting). 

 Baselines: supervised ranker, contextual bandit. 

 Metrics: CTR, conversion rate, nDCG. 

Experiment 2: Long-horizon retention optimization 

 Reward includes purchase value and predicted retention uplift; discount factor tuned to reflect 
business horizon. 

 Baselines: greedy revenue maximizer, RL without NLP features. 

 Metrics: LTV (estimated), retention at 30/90 days. 

Experiment 3: Query-conditioned recommendation (NLP-heavy) 

 Evaluate cold-start query handling: transformer encoder used to represent queries and product 
descriptions; RL policy conditions on encoded query. 

 Baselines: retrieval + supervised reranker. 

9. Practical Deployment Considerations 

9.1 Latency and serving constraints 

Design pipelines with split responsibilities: fast candidate retrieval and lightweight policy scoring in the 
latency path; heavy re-ranking offline or in background. Cache embeddings and leverage approximate 
nearest neighbor search (ANN). 

9.2 Safety, fairness, and interpretability 

 Safety gates: business rules preventing unsafe content or compliance violations. 

 Fairness: monitor exposure and ensure equitable item/provider representation; incorporate 
fairness constraints into objective as regularizers. 



P a g e  | 9 
 
 

 
 
Robotics, Autonomous, Machine Learning, and Artificial intelligence Journal                        (Volume, I, Issue II, 2022) 

 Explainability: produce local explanations for recommended slates, e.g., via attention 
visualization, content-based attributions, or counterfactuals. 

9.3 Privacy and federated options 

For privacy-sensitive retailers, consider federated representation learning where item encoders are 
learned centrally and user embeddings updated locally, with secure aggregation (McMahan et al., 
2017). Differential privacy may be applied to gradients or outputs. 

9.4 Continuous learning and model governance 

Establish model registries, lineage tracking, and retraining schedules. Maintain performance 
dashboards, drift detectors, and rollback policies. 

10. Limitations and Research Directions 

Key limitations include reward specification sensitivity, simulator fidelity, off-policy estimation bias, and 
the cold-start problem. Future research directions: 

 Better slate-aware RL algorithms with theoretical guarantees. 

 Jointly optimized multi-objective reward functions balancing short-term and long-term KPIs. 

 Richer user simulators calibrated to real longitudinal data. 

 Interpretability methods tailored to RL policies and NLP encoders. 

 Causal inference integration for disentangling promotion effects from organic behavior. 

11. Conclusion 

We presented a comprehensive hybrid framework that fuses reinforcement learning’s sequential 
decision strengths with NLP’s representational power to address contemporary e-commerce 
personalization challenges. The architecture targets realistic production constraints and provides 
rigorous offline and online evaluation methods. By combining counterfactual offline learning, 
transformer-based representation, and slate-aware RL policy design, practitioners can better align 
recommendation systems with long-term business objectives while maintaining safety, fairness, and 
scalability. 
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