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Abstract

Personalized recommendation systems are central to modern e-commerce, driving customer
engagement, conversion, and lifetime value. Traditional collaborative filtering and supervised deep
learning methods excel at modeling historical preferences but struggle with sequential decision-making,
long-term user objectives, and incorporating unstructured textual signals from reviews and queries.
This paper proposes a hybrid architecture combining reinforcement learning (RL) for sequential, long-
horizon personalization and advanced natural language processing (NLP) for rich representation of
items and user intents. We present: (1) a unified problem formulation that models recommendation as
a Markov decision process with language-enhanced state representations; (2) a modular hybrid
architecture combining a transformer-based encoder for text and context, a value-based RL policy for
slate recommendation, and a policy-improvement module guided by counterfactual learning; (3)
mathematical derivations for objective functions, off-policy correction, and gradient estimators; (4) an
evaluation framework addressing online and offline evaluation, bias and variance of estimators, and
clinical business KPIs; and (5) an implementation roadmap for production deployment in cloud
environments with privacy-preserving and latency-aware design choices. Extensive discussion
synthesizes recent literature from deep recommendation, RL for recommender systems, and NLP for
retrieval and ranking. We provide reproducible experimental blueprints, dataset recommendations, and
metrics that align engineering objectives with business outcomes. The hybrid strategy balances
immediate utility with learning for long-term customer satisfaction, and addresses common production
concerns including scalability, safety, and interpretability.

Keywords: recommendation systems, reinforcement learning, natural language processing, hybrid
models, sequential recommendation, contextual bandits, counterfactual evaluation, personalization, e-
commerce

1. Introduction

E-commerce recommendation systems aim to present the right products to the right user at the right
time. Historically, approaches such as collaborative filtering and matrix factorization have been
successful at modeling static preferences (Koren, Bell, & Volinsky, 2009; Ricci, Rokach, & Shapira,
2015). However, several practical challenges motivate rethinking recommender architectures:

Robotics, Autonomous, Machine Learning, and Atrtificial intelligence Journal (Volume, I, Issue Il, 2022)



. RAMLAILJ Page |2

A0S

1. Sequential decision-making: user interactions unfold over sessions and lifetimes; actions now
influence future behavior (Shani & Gunawardana, 2011).

2. Rich unstructured signals: product descriptions, user reviews, and natural-language search
queries carry important signals not captured by categorical features alone (Mikolov et al., 2013;
Devlin et al., 2019).

3. Trade-offs between short-term metrics and long-term value: naive greedy optimization can
increase immediate clicks while reducing retention or lifetime value (Jiang et al., 2017).

4. Off-policy learning and offline evaluation constraints: production data is collected under
existing policies, causing bias that must be addressed when training new policies offline
(Swaminathan & Joachims, 2015).

Reinforcement learning (RL) directly addresses sequential decision-making by optimizing long-term
cumulative reward (Fatunmbi, 2021). Meanwhile, modern natural language processing (NLP) methods
especially transformer architectures provide powerful encoders for textual product and user signals
(Vaswani et al., 2017; Devlin et al., 2019). A hybrid approach that leverages RL for policy learning and
NLP for representation can improve personalization while respecting business constraints.

This manuscript develops such a hybrid framework, grounding it in theory, practical considerations,
evaluation protocols, and production concerns. We review related work, formulate the problem
mathematically, propose architecture design patterns, and detail evaluation and deployment steps.

2. Literature Review

This section synthesizes three intertwined literature streams: classical and deep recommender
systems, RL for recommender systems, and NLP for representation and intent modeling.

2.1 Classical and deep recommendation approaches

Collaborative filtering and matrix factorization models (Koren et al., 2009) form the historical backbone
for recommenders. Implicit-feedback models such as Bayesian Personalized Ranking (BPR) (Rendle
et al.,, 2009) and weighted matrix factorization (Hu, Koren, & Volinsky, 2008) addressed binary
feedback. More recently, neural collaborative filtering and multi-modal deep recommenders incorporate
non-linear interactions and content features (He et al., 2017; Covington, Adams, & Sargin, 2016).
Sequential recommenders using recurrent or self-attention models (GRU4Rec; Hidasi et al., 2015;
SASRec; Kang & McAuley, 2018) handle session-level dynamics.

2.2 Reinforcement learning in recommender systems

RL reframes recommendation as a sequential decision problem, optimizing cumulative reward (Shani
& Gunawardana, 2011; Zhao et al., 2018). Approaches span contextual bandits for immediate reward
maximization (Li et al., 2010), to full-model MDP approaches using value-based (DQN) and policy-
gradient (REINFORCE, actor-critic) algorithms adapted to recommendation (Li et al., 2010; Zhao et al.,
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2018). Recent works address slate recommendations selecting a set of items per decision using
combinatorial bandits and RL (le et al., 2019; Liang et al.,, 2018). Off-policy evaluation and
counterfactual learning for recommender systems (Swaminathan & Joachims, 2015; Kallus & Uehara,
2019) are essential for safe offline policy learning.

2.3 Natural language processing for recommendation

NLP enriches item and query representations. Word embeddings and item embeddings trained with
skip-gram or doc2vec provided early improvements (Mikolov et al., 2013). Transformer models
(Fatunmbi, 2022), further refined for retrieval and ranking (BERT; Devlin et al., 2019), empower
contextualized representation learning for product titles, descriptions, and reviews. Recent
recommender work unifies transformers with user behavior sequences (Sun et al.,, 2019; Kang &
McAuley, 2018) and utilizes pretraining + fine-tuning strategies (Ying et al., 2020).

2.4 Hybrid approaches and production systems

Industry systems often adopt hybrid pipelines combining candidate generation (collaborative, content-
based), re-ranking (learning-to-rank), and business rules (Covington et al., 2016). RL-enhanced
systems have been piloted for lifetime value and promotion allocation (Zheng et al., 2018). Further,
explainability, fairness, and privacy have grown as engineering and regulatory constraints (Zhang &
Chen, 2020).

This manuscript integrates insights from these literatures to design an RL+NLP hybrid recommender
suitable for large-scale e-commerce deployments.

3. Problem Formulation

We formalize recommendation as a sequential decision process with language-enriched states.
3.1 Markov Decision Process (MDP) formulation

Define an MDP M=(S,A,P,r,y)\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)M=(S,A,P,r,y):

o S\mathcal{S}S is the state space representing user context: browsing history, user profile,
session features, and language signals (search query, textual reviews); states are high-
dimensional.

« Almathcal{A}A is the (possibly combinatorial) action space: recommending a slate
at=(i1,...,ik)a_t = (i_1, \dots, i_k)at=(i1,...,ik) of k items chosen from a catalog I\mathcal{l}I.

o P(st+1|st,at)P(s_{t+1}\mid s_t, a_t)P(st+1]|st,at) is the (unknown) transition dynamics modeling
user evolution.

o rt=r(st,at)r_t=r(s_t, a_t)rt=r(st,at) is the reward reflecting business objectives (clicks, purchases,
revenue, retention).
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e Yy€[0,1)\gamma \in [0,1)y€[0,1) is the discount factor capturing long-term value.

The policy m0(als)\pi_\theta(a\mid s)mB(als) is parameterized and learned to maximize expected
cumulative discounted reward:

J(B)=EmO[> t=0«vytrt].J(\theta) = \mathbb{E} {\pi_ \theta}\Big[ \sum_{t=0}Minfty \gamma’*t r_t
\Big].J(0)=ETO[t=0) oytrt].

3.2 Language-enriched state representation

Let textual signals TTT include product descriptions, user queries, and reviews. A neural encoder
OYW\Phi_\psi®dy (transformer) maps these into dense vectors:

et=0y(Tt),e_t = \Phi_\psi(T_t),et=Py(Tt),

and the full state is st={ht,et,u}s t = \{h_t, e_t, u\}st={ht,et,u} where hth_tht is behavioral history
embedding and uuu is static user profile.

3.3 Slate selection and combinatorics

Selecting slates introduces combinatorial complexity. We model slate construction as sequential
selection conditioned on the state or via parameterized score models with top-k extraction and a
differentiable re-ranking module for end-to-end learning.

4. Hybrid Architecture

Our architecture has three interacting modules: (A) Representation & Candidate Generator (NLP +
classical), (B) RL Policy (Slate-level decision-maker), and (C) Counterfactual / Risk Correction &
Offline Learner.

4.1 Module A Representation & Candidate Generator

e NLP Encoder: a pretrained transformer (e.g., BERT-style) fine-tuned to produce contextual
embeddings for queries and item text. The encoder outputs product embeddings viv_ivi and
query/user embeddings qtq_tqt.

« Candidate generation: uses a blend of collaborative retrieval (approximate nearest neighbors
over embedding space), content filtering (text similarity), and popularity heuristics to produce a
candidate set CtcIC_t \subset \mathcal{l}Ctcl of manageable size mmm.

4.2 Module B RL Policy & Slate Constructor

o State encoder: fuses historical sequential embedding (e.g., self-attention on past item
embeddings) with language embedding qgtq_tqt via a multi-headed attention module to produce
state vector sts_tst.

e Policy backbone: two design options:

Robotics, Autonomous, Machine Learning, and Atrtificial intelligence Journal (Volume, I, Issue Il, 2022)



R RAMLAILJ Page |5

1. Value-based: Q-network Q6(s,a)Q_\theta(s,a)Q06(s,a) estimating expected return for
candidate slates. Approximated by scoring individual items then applying a differentiable
top-k/softmax to propose slate (e.g., DQN with dueling architecture adapted to slates).

2. Policy gradient / Actor-critic: Actor mB(als)\pi_\theta(a\mid s)mB(als) sequentially
samples items for slate; Critic Vw(s)V_w(s)Vw(s) provides baseline for variance reduction
(A2C/PPO style).

« Slate-level re-ranking: a reranker network that considers inter-item complementarity and
diversity, trained with RL reward signals.

4.3 Module C Counterfactual Risk & Offline Learning

e Inverse Propensity Scoring (IPS) and Doubly Robust (DR) estimators correct for logging
policy bias during offline training (Swaminathan & Joachims, 2015).

« Constrained policy optimization: uses offline risk bounds to ensure the new policy does not
degrade key business metrics when deployed (Kallus & Uehara, 2019).

o Safety layer: rule-based guard rails (business constraints, fairness filters) applied before
serving.

5. Mathematical Details

We present formal objectives, estimators, and gradient expressions for the hybrid model.

5.1 Policy gradient for slate selection

Let 1B(als)\pi_\theta(a\mid s)mB(als) be the stochastic policy over slates. The policy gradient objective:

VOJ(0)=ETB[> tVBlogmB(at|st) Gt],\nabla_\theta J(\theta) = \mathbb{E} {\pi \theta}\Big[ \sum_{t}
\nabla_\theta \log\pi_\theta(a_t\mid s_t)\, G_t \Big],v8J(0)=Em0[t) VBlogmB(at|st)Gt],

where Gt=) k=0-ykrt+kG_t = \sum_{k=0}Minfty \gamma’k r_{t+k}Gt=) k=0-ykrt+k. Practically, use
advantage estimates AM=Gt-Vw(st)\hat{A} t = G_t - V_w(s_t)AM=Gt-Vw(st) with an actor-critic
algorithm to reduce variance (Sutton & Barto, 2018).

5.2 Off-policy correction: IPS & Doubly Robust estimators

Given logged data D={(si,ai,ri,pi)\mathcal{D} = \{(s_i, a_i, r_i, p_i)\}D={(si,ai,ri,pi)}, where pip_ipi is the
logging policy probability of action aia_iai, the IPS estimate of expected reward under target policy
T\pITT is:

VAIPS(1m)=1NY i=1NTr(ailsi)piri.\hat{V}_{\text{IPS}}(\pi) = \frac{1}{N}sum_{i=1}*N \frac{\pi(a_i\mid
s_i){p_i} r_i.VMPS(1r)=N1i=13 Npitr(ailsi)ri.

Doubly robust (DR) estimator combines IPS with a reward model r(s,a)\hat{r}(s,a)r’\(s,a):
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VADR(1)=1NY i=1N[r(si,r)+1T(ailsi)pi(ri-r(si,ai))].\hat{V}_{\text{DR}}(\pi) = \frac{1{NHNsum_{i=1}"N
\Big[ \hat{r}(s_i, \pi) + \frac{\pi(a_i\mid s_i){p_i} \big( r_i - \hat{r}(s_i,a_i) \big) \Big].VADR(1)=N1i=1) N
[rA(si,TT)+pitr(ailsi)(ri-r’(si,ai))].

DR reduces bias and variance under model misspecification (Dudik et al., 2011; Swaminathan &
Joachims, 2015).

5.3 Counterfactual policy optimization
We optimize:

max0 VADR(10)—-A Reg(1m8),\max_{\theta} \; \hat{V} {\text{DR}}(\pi_\theta) - \lambda \,
\text{Reg}(\pi_\theta),6maxV DR (110)-AReg(118),

where Reg\text{Reg}Reg enforces constraints (e.g., propensity regularization, exposure fairness).
Gradients of V2ADR\hat{V} {\text{DR}}VADR with respect to O\thetab can be estimated using
reparameterization (where possible) or score-function estimators with baseline subtraction.

5.4 Representation learning objective (NLP encoder fine-tuning)

Transformer encoder parameters w\psiy are fine-tuned by multi-task objectives: masked language
modeling (if pretraining continued), supervised title—category classification, and contrastive losses
aligning query and item embeddings:

Lcontrast=—1B) i=1Blogexp(qiTvi/T)} j=1Bexp(qiTvj/T).\mathcal{L} {\text{contrast}} = -
\frac{1}{B}\sum_{i=1}{B} \log \frac{\exp(q_i"top v_i / \tau)}{\sum_{j=1}B} \exp(q_i"top v_j /
\tau)}.Lcontrast=—B1i=1> Blog) j=1Bexp(qi Tvj/T)exp(qiTvi/T).

Joint training with RL is handled via alternating updates or by treating encoder as part of the policy net
and backpropagating RL gradients caution required due to sparse reward signals, so pretraining is
recommended.

6. Training and Optimization Strategies
6.1 Pretraining then RL fine-tuning

1. Pretrain item and user encoders with supervised and self-supervised tasks (click prediction,
masked language modeling, contrastive learning).

2. Candidate generator training: learn retrieval models using approximate nearest neighbor over
learned embeddings.

3. Offline RL: use logged bandit feedback and counterfactual estimators to update policy. Use
behavior cloning (supervised) initialization to stabilize learning.

4. Safe online exploration: implement conservative policy updates (trust region or KL constraints)
and A/B testing in canary cohorts.
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6.2 Sample efficiency and replay buffers

Leverage experience replay adapted for non-stationary user populations; prioritize recent experiences
while maintaining long-term diversity.

6.3 Scalability and distributed training

Scale via distributed data-parallel parameter servers for encoder and policy networks; use approximate
search indices for candidate retrieval. For real-time serving, deploy encoder and policy on low-latency
inference paths; heavy retraining runs in offline clusters.

7. Evaluation Framework

Arigorous evaluation strategy combines offline counterfactual evaluation, simulation-based evaluation,
and staged online experiments.

7.1 Offline evaluation

e Metrics: expected reward (IPS/DR), normalized discounted cumulative gain (nDCG),
precision@k, recall@k, diversity (intra-list diversity), calibration, and long-term metrics estimated
via model-based simulation.

« Bias control: report variance and confidence intervals of off-policy estimators; perform
sensitivity analyses to propensity estimation errors.

7.2 Simulation and user models

Construct user simulators trained on logged data to assess long-term effects, retention, and multi-step
consequences of policy changes. Models range from simple parametric dynamics to recurrent neural
user simulators.

7.3 Online evaluation
« Canary experiments: constrained rollout in small user segments.

o A/B testing: measure short-term KPIs and track long-term cohorts. Use sequential testing
procedures to control false discovery rates.

8. Datasets and Experimental Blueprints
We recommend several public datasets for reproducible work and propose experimental setups:
8.1 Candidate datasets

o Retail-structured datasets: Amazon review datasets (product metadata + reviews) for large-
scale offline experiments.
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o Session datasets: RetailRocket, RecSys Challenge datasets for session-based sequential
experiments.

« Search and query logs: where available, to evaluate query-conditioned recommendations.

When using reviews and descriptions, ensure text preprocessing, tokenization consistent with encoder
choices, and split data at the user level to avoid leakage.

8.2 Experimental protocol examples
Experiment 1: Short-horizon value optimization
o Candidate generator produces 50 items.
e RL policy trained to optimize immediate purchase probability (high discounting).
o Baselines: supervised ranker, contextual bandit.
o Metrics: CTR, conversion rate, nDCG.
Experiment 2: Long-horizon retention optimization

« Reward includes purchase value and predicted retention uplift; discount factor tuned to reflect
business horizon.

o Baselines: greedy revenue maximizer, RL without NLP features.
e Metrics: LTV (estimated), retention at 30/90 days.
Experiment 3: Query-conditioned recommendation (NLP-heavy)

« Evaluate cold-start query handling: transformer encoder used to represent queries and product
descriptions; RL policy conditions on encoded query.

« Baselines: retrieval + supervised reranker.
9. Practical Deployment Considerations
9.1 Latency and serving constraints

Design pipelines with split responsibilities: fast candidate retrieval and lightweight policy scoring in the
latency path; heavy re-ranking offline or in background. Cache embeddings and leverage approximate
nearest neighbor search (ANN).

9.2 Safety, fairness, and interpretability
o Safety gates: business rules preventing unsafe content or compliance violations.

o Fairness: monitor exposure and ensure equitable item/provider representation; incorporate
fairness constraints into objective as regularizers.
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« Explainability: produce local explanations for recommended slates, e.g., via attention
visualization, content-based attributions, or counterfactuals.

9.3 Privacy and federated options

For privacy-sensitive retailers, consider federated representation learning where item encoders are
learned centrally and user embeddings updated locally, with secure aggregation (McMahan et al.,
2017). Differential privacy may be applied to gradients or outputs.

9.4 Continuous learning and model governance

Establish model registries, lineage tracking, and retraining schedules. Maintain performance
dashboards, drift detectors, and rollback policies.

10. Limitations and Research Directions

Key limitations include reward specification sensitivity, simulator fidelity, off-policy estimation bias, and
the cold-start problem. Future research directions:

« Better slate-aware RL algorithms with theoretical guarantees.
« Jointly optimized multi-objective reward functions balancing short-term and long-term KPlIs.
« Richer user simulators calibrated to real longitudinal data.
o Interpretability methods tailored to RL policies and NLP encoders.
« Causal inference integration for disentangling promotion effects from organic behavior.
11. Conclusion

We presented a comprehensive hybrid framework that fuses reinforcement learning’s sequential
decision strengths with NLP’s representational power to address contemporary e-commerce
personalization challenges. The architecture targets realistic production constraints and provides
rigorous offline and online evaluation methods. By combining counterfactual offline learning,
transformer-based representation, and slate-aware RL policy design, practitioners can better align
recommendation systems with long-term business objectives while maintaining safety, fairness, and
scalability.
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