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Abstract

Financial forecasting at large scale covering cross-asset returns, volatility surfaces, and
high-frequency microstructure remains a central and challenging problem for both
academia and industry. Classical machine learning (ML) and deep learning methods (e.g.,
gradient-boosted trees, recurrent and attention-based networks) have delivered notable
advances in predictive accuracy and trading performance, but they face limits in sample
efficiency, feature expressivity for extremely high-dimensional inputs, and in solving
certain kernel-like inference problems at scale. Quantum machine learning (QML)
techniques principally quantum kernel methods and variational quantum circuits
(quantum neural networks, QNNs) offer alternative inductive biases and potentially new
computational primitives that may be relevant for financial forecasting, particularly in
small-label/high-dimension regimes or combinatorial subproblems such as portfolio
optimization.

This manuscript presents a comprehensive comparative study framework for classical
and quantum ML approaches applied to large-scale financial forecasting. We (1) survey
theoretical foundations, (2) propose reproducible experimental and evaluation protocols,
(3) delineate architecture patterns and practical engineering considerations for both
classical and quantum approaches, (4) prescribe robust backtesting and risk-aware
evaluation metrics, and (5) discuss empirical expectations, limitations, and a prioritized
research agenda. We include implementation pseudocode, data preprocessing
recommendations, hyperparameter tuning strategies, and considerations for quantum
hardware constraints (NISQ devices).

Keywords: financial forecasting; quantum machine learning; variational quantum circuits;
quantum kernels; time-series forecasting; XGBoost; transformers; backtesting; NISQ;
reproducible experiments

1. Introduction
1.1 Motivation

Large-scale financial forecasting predicting asset returns, volatility, liquidity metrics, or
order-flow behavior across hundreds to thousands of instruments underpins pricing, risk
management, algorithmic trading, and portfolio construction. Classical ML methods
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(ensemble trees, neural networks, attention models) scale well and exploit modern
compute but often require extensive labeled data, careful feature engineering, and robust
regularization to avoid overfitting in non-stationary markets (Goodfellow et al., 2016; Chen
& Guestrin, 2016). In contrast, QML proposes new representational mechanisms
(quantum feature maps, Hilbert-space embeddings) and variational circuits that might
provide advantages in expressivity or sample complexity for certain structured tasks
(Biamonte et al., 2017; HavliCek et al., 2019; Cerezo et al., 2021). Given rapid advances
and the practical constraints of near-term quantum hardware (NISQ devices), a
methodical comparative evaluation is needed to clarify where, how, and when quantum
methods could be meaningfully applied in financial forecasting.

1.2 Objectives and contributions
This manuscript's objectives are threefold:

1. Framework & Diagnostics: Provide a rigorous framework to compare classical
and QML methods on large-scale forecasting tasks, including data schemas,
preprocessing, modeling pipelines, and evaluation metrics tailored to finance
(Samuel, 2022).

2. Algorithms & Implementation: Present reproducible algorithmic templates for
representative classical baselines (ARIMA/GARCH, XGBoost, LSTM, Temporal
Fusion Transformer) and quantum methods (quantum kernels, variational quantum
circuits for regression/classification), including training details, hyperparameter
guidance, and computational budgeting.

3. Experimental Blueprint & Roadmap: Define datasets (public and synthetic),
walk-forward evaluation protocols, risk-aware backtesting measures, and a
prioritized research agenda emphasizing reproducibility, interpretability, and
realistic quantum resource accounting (Fatunmbi, 2021).

1.3 Paper organization

Section 2 reviews related work. Section 3 formalizes problem definitions and datasets.
Section 4 details classical ML methods. Section 5 develops QML approaches and
practical NISQ considerations. Section 6 describes the experimental design and
evaluation protocol. Section 7 outlines implementation notes, computational costing, and
software frameworks. Section 8 discusses expected empirical behaviors, interpretability,
and risk management implications. Section 9 identifies open challenges, limitations, and
a prioritized roadmap. Section 10 concludes.

2. Related work
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Research at the intersection of classical ML for finance and QML is growing. Classical
forecasting leverages both statistical time-series modeling (ARIMA, GARCH) and modern
ML: gradient boosting (XGBoost), random forests, LSTM/RNNs, and Transformer-based
models (Vaswani et al., 2017; Lim et al., 2021) for multi-horizon forecasting. Feature
engineering (technical indicators, liquidity metrics, order-book microstructure) and careful
evaluation (walk-forward, transaction-cost aware backtests) are central to real-world
success (Goodfellow et al., 2016; Chen & Guestrin, 2016).

Quantum machine learning literature explores quantum kernels (Havlicek et al., 2019),
variational quantum circuits (VQC/QNN) (Cerezo et al., 2021), and hybrid quantum-
classical optimization (Preskill, 2018). Early experiments apply QML to
classification/regression benchmarks and small finance problems (classification of credit
risk, portfolio selection prototypes) but large-scale forecasting applications remain
nascent. Reviews by Biamonte et al. (2017) and Meyer et al. (2022/2024 preprints) survey
quantum algorithms and quantum reinforcement learning; Cerezo et al. (2021) document
variational algorithm design issues (barren plateaus, noise mitigation).

3. Problem formulation and data
3.1 Forecasting tasks considered
We focus on three canonical forecasting problems that capture common industry needs:

1. Cross-Sectional Next-Day Return Forecasting (Regression): Predict next-day
returns (r_{i,t+1}) for a universe of (N) assets given historical features (X {i,t-
L+1:t}) and cross-asset signals.

2. Volatility and Value-at-Risk (VaR) Forecasting (Distributional/Quantile):
Forecast conditional volatility (\sigma_{i,t+h}) or quantiles for risk management
over multiple horizons.

3. Multi-Horizon Liquidity & Order-Flow Forecasting (Sequence-to-Sequence):
Multi-step prediction of market depth metrics, fill rates, or order imbalance to
support execution algorithms.

These tasks vary in label density, noise properties, and stationarity, providing a
representative testbed.

3.2 Data sources and schema
For a comparative study we recommend the following data types:
« Daily/Intraday Price Series: OHLCV time series for equities, FX, or futures.

« Microstructure Features: Best bid/ask depth, trades, quote changes (for intraday
liquidity).
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« Fundamental/Alternative Signals: Earnings surprises, macro indicators,
sentiment scores.

o Cross-Asset Signals: Sector indices, FX rates, yield curves.

Public datasets for replicable research include: CRSP/Compustat (academic access),
Quandl, Yahoo Finance (prices), and LOBSTER for limit-order book data. Synthetic
datasets that preserve stylized facts (GARCH volatility clustering, jumps,
heteroskedasticity) are important for stress testing.

Data representation: For each asset (i) and time (t), construct an input tensor (X_{i,t})
containing lagged returns, technical indicators, cross-sectional rank features, and
exogenous macro variables. Normalization (z-score, rolling winsorization) and stationarity
transforms (log returns) are standard.

3.3 Evaluation regimes and non-stationarity

Markets are non-stationary; therefore evaluation must use walk-forward cross-
validation with rolling retraining windows and out-of-sample testing. We adopt a rolling
window approach with train/validation/test splits that move forward in time, and we apply
temporal nested cross-validation for robust hyperparameter selection (Samuel, 2023).

4. Classical machine learning methods

This section sets out baseline classical methods from statistical to deep learning that will
be compared with QML.

4.1 Statistical time-series baselines

« ARIMA/GARCH family: Useful for single-series baselines and volatility modeling;
specify model orders via AIC/BIC and use rolling re-estimation to cope with non-
stationarity.

o State-Space/Kalman filters: Useful for latent factor tracking and dynamic
modeling of unobserved components (e.g., regime switches).

While statistically interpretable, these methods struggle with incorporate large
heterogeneous features across many assets.

4.2 Tree ensembles and feature-based learners

o« XGBoost/LightGBM (Chen & Guestrin, 2016): Strong baselines for tabular
features; robust to missing data and effective with careful feature engineering.

« Random Forests, CatBoost: Alternative ensemble methods; provide feature
importance measures.
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Key hyperparameters: number of trees, learning rate, max depth, subsampling; tune via
time-aware cross-validation.

4.3 Deep learning models

e« LSTM / GRU (Hochreiter & Schmidhuber, 1997): Sequence modeling for
temporal dependencies.

« Temporal Fusion Transformer (TFT) & Transformers (Vaswani et al., 2017;
Lim et al.,, 2021): Attention mechanisms for multi-horizon forecasting; TFT
provides interpretable attention and gating components well-suited to time-series.

e Hybrid CNN-LSTM: For order-book images or short-term microstructure patterns.

Training considerations: regularization (dropout, weight decay), sequence length
selection, batch normalization for sequences, and early stopping conditioned on forward
walk-forward validation.

4.4 Model ensembling and stacking

Ensembles across model families (statistical + tree + deep) often deliver improved
stability via error decorrelation. Use stacking with out-of-fold predictions in the temporal
domain respecting time ordering.

5. Quantum machine learning approaches
5.1 Quantum kernels and kernel methods

Quantum kernel methods map classical data into a quantum Hilbert space via feature
maps ( \Phi: x \mapsto |\Phi(x)\rangle ) realized by parameterized circuits, and compute
kernel entries (K(x,x') = |\langle\Phi(x)|\Phi(x')\rangle|*2) or expectation-value kernels
(Havlicek et al., 2019). Kernel ridge regression or kernel SVM can be applied for
regression/classification.

Prospects: In high-dimension/small-label regimes, quantum kernels may produce
separability not achieved by classical kernels, potentially improving generalization
(Havlicek et al., 2019). However, kernel evaluation cost grows with dataset size (requires
many kernel evaluations), making scalability a key constraint.

5.2 Variational quantum circuits (QNNs) for regression

VQCs (QNNs) parameterize a circuit (U(\theta)) acting on an encoded state
(\Phi(x)\rangle); measurement vyields features (y(x;\theta)) used for downstream
predictions. For regression, a simple architecture is:

1. Encode (x) into qubits (angle or amplitude encoding).
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2. Apply layers of parameterized single- and two-qubit gates (ansatz).

3. Measure a set of observables; aggregate into scalar/regression output via classical
linear readout.

Training: Optimize (\theta) via classical optimizers using the parameter-shift rule (Cerezo
et al., 2021). Shot-noise and barren plateau issues necessitate careful ansatz design and
gradient variance control.

5.3 Hybrid quantum-classical architectures
Practical near-term architectures use hybridization:

o Classical encoder + quantum latent + classical decoder: Classical networks
compress high-dimensional inputs into compact vectors (d = 8-64) that are
encoded into QNNs for richer transformations, then decoded by classical heads.

e Quantum feature augmentations: Compute quantum kernel features offline for
a subset of training data and combine with classical features through
concatenation.

Figure (conceptual) hybrid pipeline: Input — classical preprocessing — quantum module
(kernels / VQC) — classical ML head — prediction.

5.4 Encoding strategies and resource tradeoffs

« Angle encoding: Map components of feature vector into rotation angles on single
qubits linear in dimension.

« Amplitude encoding: Potentially exponentially compress features into
amplitudes, but state preparation is costly.

« Basis encoding: Encode discrete/categorical info into computational basis states.

Resource tradeoffs (qubits, circuit depth, shots) guide encoding choice: amplitude
encoding may be impractical on NISQ devices due to state preparation cost, while angle
encoding is hardware-efficient.

5.5 NISQ constraints and mitigation strategies

« Barren plateaus: Use problem-inspired ansatz and local cost functions to mitigate
vanishing gradients (Cerezo et al., 2021).

« Noise & error mitigation: Zero-noise extrapolation, measurement error
mitigation, and readout calibration can improve effective fidelity.
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« Shot budgeting: Efficiently schedule shots (measurements) during training; use
higher shots for critic/validation and fewer shots for exploratory updates (Fatunmbi,
2022).

6. Experimental design and evaluation protocol

This section provides a detailed, reproducible plan for experiments comparing classical
and quantum methods.

6.1 Datasets and pre-processing
Recommended datasets:

o Daily cross-section: S&P 500 constituents price and fundamentals from 2005—
2020.

o Intraday microstructure: LOBSTER limit order book snapshots for selected
equities (for liquidity forecasting).

o Synthetic scenarios: Simulated multi-asset series incorporating stylized features
(regime switches, jumps, correlated shocks) for stress tests.

Preprocessing pipeline: time alignment, missing value handling (forward fill with
indicator), log returns, rolling normalization (z-score over lookback window), and
categorical encoding for event flags. Maintain strict chronological order.

6.2 Train/validation/test splits

Use rolling windows (e.g., 3-year training, 6-month validation, 6-month test) that
advance monthly. For hyperparameter tuning, use nested rolling cross-validation to avoid
look-ahead bias.

6.3 Metrics
« Point forecasts: MSE, RMSE, MAE, directional accuracy (hit ratio).

o Value-oriented metrics: Information ratio, Sharpe ratio of strategy built on
predictions, P&L after realistic transaction costs and slippage.

« Risk metrics (volatility forecasts): QLIKE loss, VaR exceedance frequency.

« Stability/robustness: Performance decay over out-of-sample horizons, sensitivity
to covariate shift, adversarial robustness tests.

o Computational & resource metrics: wall-clock time, CPU/GPU hours (classical),
QPU time and shots (quantum), memory footprint.

6.4 Baseline configurations and hyperparameters
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Classical baselines:
¢ ARIMA/GARCH: select orders via AIC/BIC.

e XGBoost: tune n_estimators [100-2000], learning_rate [0.01-0.3], max_depth [3—
12].

e« LSTM: layers 1-3, hidden size 64-512, learning rate 1e-4—1e-3.
e Transformer/TFT: model dim 64-512, heads 4-8, lookback 128-512.
Quantum setups:

e Quantum kernel SVM: choose feature maps: hardware-efficient vs problem-
aware; use classical kernel baselines (RBF, polynomial) tuned similarly.

e« VQC regression: ansatz depth L € [1, 6], qubits q € [4, 20] (depending on
hardware/simulator), shots S € {256, 512, 2048}.

Hyperparameters tuned via grid/randomized search within temporal cross-validation.
6.5 Training regime and reproducibility
o Seed control for RNGs, deterministic data splits logged.

o Use containerized experiments (Docker) and notebooks with exact dependency
versions (Python, PennyLane/Qiskit for quantum runs, PyTorch/TF, XGBoost).

e Use experiment tracking (MLflow/W&B) to log metrics, parameters, and artifacts.

e For quantum runs, report hardware backend, calibration data (T1/T2, gate errors),
and shot counts.

6.6 Statistical comparison

Use paired tests across rolling windows (Diebold-Mariano test for forecast accuracy
differences; bootstrap confidence intervals for Sharpe ratio differences) to establish
significance.

7. Implementation details and pseudocode

Below we include reproducible pseudocode for major pipelines.
7.1 Classical deep learning pipeline (example: TFT)

# Pseudocode: Training trainer for Temporal Fusion Transformer
for window_start in rolling_windows:

train_data = get_train(window_start)
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val_data = get_val(window_start)
model = TFT(config)
for epoch in range(max_epochs):
for batch in train_data:
preds = model(batch.inputs)
loss = loss_fn(preds, batch.targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
val_loss = evaluate(model, val_data)
if early_stop(val_loss): break
save_model(model, meta)
7.2 Quantum kernel training (kernel ridge regression)
# Compute quantum kernel matrix K_ij = <Phi(x_i)|Phi(x_j)>"2 via quantum circuit
for i in range(n_train):
for j in range(i, n_train):
K[i,jl = quantum_kernel(x_i, x_j, backend, shots)

K11 = KIi.j]

# Solve kernel ridge regression: alpha = (K + lambda ){-1} y

alpha = solve_linear_system(K + lambda_reg * |, y_train)

# Prediction for test point x_star: k_star = [quantum_kernel(x_star, x_i)]
y_pred = k_star @ alpha

7.3 VQC regression (hybrid gradient-based loop with parameter-shift)
# Pseudocode for VQC training using parameter-shift gradient

theta = initialize_parameters(ansatz)

for epoch in range(EPOCHS):
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for batch in dataloader:

# classical encoding

z = classical_encoder(batch.inputs) # reduce dims

# compute predictions with quantum circuit

y_hat =]

for xin z:
state = prepare_quantum_state(x) # angle encoding
apply_ansatz(state, theta)
y_hat.append(measure_expectation(state, shots))

loss = MSE(y_hat, batch.targets)

# estimate gradients for theta using parameter-shift

grad_theta = parameter_shift_gradients(theta, z, loss_fn)

theta = optimizer.update(theta, grad_theta)

Note: Parameter-shift requires two evaluations per parameter per gradient estimate; for
large parameter counts, consider stochastic gradient approximations (SPSA) or hybrid
local updates.

8. Expected empirical behaviors and interpretability

Because quantum advantage for practical ML tasks remains unproven at scale, this study
emphasizes comparative expectations rather than claims of superiority.

8.1 When classical methods excel

o Large labeled datasets and abundant compute: deep learning and ensemble
methods scale efficiently and provide strong baselines.

« Highly nonstationary markets: transfer learning and continual learning
approaches in classical ML currently offer practical solutions for concept drift.

8.2 Where QML may be promising

« Small-label, high-dimension regimes: quantum kernels may create separable
representations that classical kernels do not capture (Havlicek et al., 2019).

« Combinatorial subproblems: quantum annealers/QAOA could provide candidate
sets for discrete portfolio selection under constraints.
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o Feature augmentation: QNNs as compact feature transformers could help in
cases where classical embeddings are difficult to design.

8.3 Interpretability & model risk

Financial institutions require interpretability and model governance. Classical methods
(linear models, tree ensembles) provide clearer feature importances and partial
dependence plots. For QML, propose the following interpretability practices:

o Surrogate classical models: Fit an interpretable surrogate to QNN outputs for
explanation (LIME/SHAP over QNN features).

« Feature importance via ablation: Measure predictive degradation when quantum
features are removed.

« Robustness checks: Sensitivity to perturbations and stress scenarios.
9. Computational cost, scaling, and practical constraints
9.1 Classical compute

Costs measured by GPU/CPU hours; scaling to hundreds/thousands of assets requires
cluster computing and engineered feature pipelines.

9.2 Quantum compute and hybrid economics
Quantum resource accounting should include:
« QPU wall time: provider queue + execution time.
e Shot counts: per circuit measurement repetitions.
o State preparation overhead: for amplitude encoding or complex feature maps.

o Simulated quantum costs: classical simulators scale exponentially and are
feasible only for small qubit counts or approximate circuits.

A realistic cost-benefit analysis must compare business value uplift (e.g., additional
Sharpe points) against quantum access fees and integration engineering. Near-term pilot
designs should minimize QPU calls (batch kernel computations offline, caching) and rely
on simulators for development.

10. Robustness, risk, and regulatory considerations

Financial models influence capital and customer outcomes; thus model risk management
is essential.

« Backtesting with transaction costs and slippage: Ensure reported P&L is
realistic.
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Stress testing across regimes: Evaluate performance during tails (crashes,
liquidity droughts).

Governance & audit trails: Log model versions, data lineage, and quantum
backend parameters.

Regulatory transparency: Many regulators require explainable models for
trading and risk management decisions; prepare surrogate explanations for
quantum components.

11. Limitations and open research problems

Scalability of quantum methods: Kernel evaluations scale O(n?) unless
approximations used; QPU throughput remains limited.

Empirical evidence: Proofs of practical quantum advantage for forecasting
remain lacking; prior literature shows theoretical potential but limited real-world
demonstrations (Biamonte et al., 2017; Havlicek et al., 2019).

Noisy training & barren plateaus: Algorithmic research is needed to mitigate
these effects for VQCs (Cerezo et al., 2021).

Data non-stationarity: QML research must adapt to concept drift and continual
learning contexts common in finance.

12. Prioritized research roadmap

Short term (0-18 months)

Build reproducible benchmark suite (public datasets + synthetic stress scenarios).

Implement hybrid classical + quantum feature pipelines on simulators; perform
offline kernel comparisons.

Develop best practices for shot budgeting and parameter-shift adaptations.

Medium term (18-48 months)

Pilot QML feature augmentations in shadow mode on low-latency pipelines.
Evaluate QAOA/annealer for discrete selection subproblems at moderate scale.

Collaborate with cloud QPU providers to benchmark real hardware performance
on finance tasks.

Long term (48+ months)

Mature fault-tolerant QML algorithms for large-scale optimization.
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e Integrate quantum pipelines into live trading systems with robust governance and
economic validation.

13. Conclusions

This manuscript provides a comprehensive comparative framework and experimental
blueprint for evaluating classical and quantum machine learning approaches to large-
scale financial forecasting. Classical ML remains the workhorse with mature toolchains
and demonstrated performance at scale, whereas QML offers intriguing new
representational paradigms that may confer advantage in particular problem regimes
especially small-label/high-dimension tasks or combinatorial subproblems. We
emphasize reproducible experimental protocols, rigorous walk-forward validation,
realistic resource accounting, and model governance as prerequisites for any claims of
quantum benefit. The road ahead requires interdisciplinary collaboration quantum
algorithm researchers, financial engineers, and operations teams to translate theoretical
promise into verified business value.
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