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Abstract 

Financial forecasting at large scale covering cross-asset returns, volatility surfaces, and 
high-frequency microstructure remains a central and challenging problem for both 
academia and industry. Classical machine learning (ML) and deep learning methods (e.g., 
gradient-boosted trees, recurrent and attention-based networks) have delivered notable 
advances in predictive accuracy and trading performance, but they face limits in sample 
efficiency, feature expressivity for extremely high-dimensional inputs, and in solving 
certain kernel-like inference problems at scale. Quantum machine learning (QML) 
techniques principally quantum kernel methods and variational quantum circuits 
(quantum neural networks, QNNs) offer alternative inductive biases and potentially new 
computational primitives that may be relevant for financial forecasting, particularly in 
small-label/high-dimension regimes or combinatorial subproblems such as portfolio 
optimization. 

This manuscript presents a comprehensive comparative study framework for classical 
and quantum ML approaches applied to large-scale financial forecasting. We (1) survey 
theoretical foundations, (2) propose reproducible experimental and evaluation protocols, 
(3) delineate architecture patterns and practical engineering considerations for both 
classical and quantum approaches, (4) prescribe robust backtesting and risk-aware 
evaluation metrics, and (5) discuss empirical expectations, limitations, and a prioritized 
research agenda. We include implementation pseudocode, data preprocessing 
recommendations, hyperparameter tuning strategies, and considerations for quantum 
hardware constraints (NISQ devices).  

Keywords: financial forecasting; quantum machine learning; variational quantum circuits; 
quantum kernels; time-series forecasting; XGBoost; transformers; backtesting; NISQ; 
reproducible experiments 

1. Introduction 

1.1 Motivation 

Large-scale financial forecasting predicting asset returns, volatility, liquidity metrics, or 
order-flow behavior across hundreds to thousands of instruments underpins pricing, risk 
management, algorithmic trading, and portfolio construction. Classical ML methods 
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(ensemble trees, neural networks, attention models) scale well and exploit modern 
compute but often require extensive labeled data, careful feature engineering, and robust 
regularization to avoid overfitting in non-stationary markets (Goodfellow et al., 2016; Chen 
& Guestrin, 2016). In contrast, QML proposes new representational mechanisms 
(quantum feature maps, Hilbert-space embeddings) and variational circuits that might 
provide advantages in expressivity or sample complexity for certain structured tasks 
(Biamonte et al., 2017; Havlíček et al., 2019; Cerezo et al., 2021). Given rapid advances 
and the practical constraints of near-term quantum hardware (NISQ devices), a 
methodical comparative evaluation is needed to clarify where, how, and when quantum 
methods could be meaningfully applied in financial forecasting. 

1.2 Objectives and contributions 

This manuscript's objectives are threefold: 

1. Framework & Diagnostics: Provide a rigorous framework to compare classical 
and QML methods on large-scale forecasting tasks, including data schemas, 
preprocessing, modeling pipelines, and evaluation metrics tailored to finance 
(Samuel, 2022). 

2. Algorithms & Implementation: Present reproducible algorithmic templates for 
representative classical baselines (ARIMA/GARCH, XGBoost, LSTM, Temporal 
Fusion Transformer) and quantum methods (quantum kernels, variational quantum 
circuits for regression/classification), including training details, hyperparameter 
guidance, and computational budgeting. 

3. Experimental Blueprint & Roadmap: Define datasets (public and synthetic), 
walk-forward evaluation protocols, risk-aware backtesting measures, and a 
prioritized research agenda emphasizing reproducibility, interpretability, and 
realistic quantum resource accounting (Fatunmbi, 2021). 

1.3 Paper organization 

Section 2 reviews related work. Section 3 formalizes problem definitions and datasets. 
Section 4 details classical ML methods. Section 5 develops QML approaches and 
practical NISQ considerations. Section 6 describes the experimental design and 
evaluation protocol. Section 7 outlines implementation notes, computational costing, and 
software frameworks. Section 8 discusses expected empirical behaviors, interpretability, 
and risk management implications. Section 9 identifies open challenges, limitations, and 
a prioritized roadmap. Section 10 concludes. 

2. Related work 
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Research at the intersection of classical ML for finance and QML is growing. Classical 
forecasting leverages both statistical time-series modeling (ARIMA, GARCH) and modern 
ML: gradient boosting (XGBoost), random forests, LSTM/RNNs, and Transformer-based 
models (Vaswani et al., 2017; Lim et al., 2021) for multi-horizon forecasting. Feature 
engineering (technical indicators, liquidity metrics, order-book microstructure) and careful 
evaluation (walk-forward, transaction-cost aware backtests) are central to real-world 
success (Goodfellow et al., 2016; Chen & Guestrin, 2016). 

Quantum machine learning literature explores quantum kernels (Havlíček et al., 2019), 
variational quantum circuits (VQC/QNN) (Cerezo et al., 2021), and hybrid quantum-
classical optimization (Preskill, 2018). Early experiments apply QML to 
classification/regression benchmarks and small finance problems (classification of credit 
risk, portfolio selection prototypes) but large-scale forecasting applications remain 
nascent. Reviews by Biamonte et al. (2017) and Meyer et al. (2022/2024 preprints) survey 
quantum algorithms and quantum reinforcement learning; Cerezo et al. (2021) document 
variational algorithm design issues (barren plateaus, noise mitigation). 

3. Problem formulation and data 

3.1 Forecasting tasks considered 

We focus on three canonical forecasting problems that capture common industry needs: 

1. Cross-Sectional Next-Day Return Forecasting (Regression): Predict next-day 
returns (r_{i,t+1}) for a universe of (N) assets given historical features (X_{i,t-
L+1:t}) and cross-asset signals. 

2. Volatility and Value-at-Risk (VaR) Forecasting (Distributional/Quantile): 
Forecast conditional volatility (\sigma_{i,t+h}) or quantiles for risk management 
over multiple horizons. 

3. Multi-Horizon Liquidity & Order-Flow Forecasting (Sequence-to-Sequence): 
Multi-step prediction of market depth metrics, fill rates, or order imbalance to 
support execution algorithms. 

These tasks vary in label density, noise properties, and stationarity, providing a 
representative testbed. 

3.2 Data sources and schema 

For a comparative study we recommend the following data types: 

 Daily/Intraday Price Series: OHLCV time series for equities, FX, or futures. 

 Microstructure Features: Best bid/ask depth, trades, quote changes (for intraday 
liquidity). 
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 Fundamental/Alternative Signals: Earnings surprises, macro indicators, 
sentiment scores. 

 Cross-Asset Signals: Sector indices, FX rates, yield curves. 

Public datasets for replicable research include: CRSP/Compustat (academic access), 
Quandl, Yahoo Finance (prices), and LOBSTER for limit-order book data. Synthetic 
datasets that preserve stylized facts (GARCH volatility clustering, jumps, 
heteroskedasticity) are important for stress testing. 

Data representation: For each asset (i) and time (t), construct an input tensor (X_{i,t}) 
containing lagged returns, technical indicators, cross-sectional rank features, and 
exogenous macro variables. Normalization (z-score, rolling winsorization) and stationarity 
transforms (log returns) are standard. 

3.3 Evaluation regimes and non-stationarity 

Markets are non-stationary; therefore evaluation must use walk-forward cross-
validation with rolling retraining windows and out-of-sample testing. We adopt a rolling 
window approach with train/validation/test splits that move forward in time, and we apply 
temporal nested cross-validation for robust hyperparameter selection (Samuel, 2023). 

4. Classical machine learning methods 

This section sets out baseline classical methods from statistical to deep learning that will 
be compared with QML. 

4.1 Statistical time-series baselines 

 ARIMA/GARCH family: Useful for single-series baselines and volatility modeling; 
specify model orders via AIC/BIC and use rolling re-estimation to cope with non-
stationarity. 

 State-Space/Kalman filters: Useful for latent factor tracking and dynamic 
modeling of unobserved components (e.g., regime switches). 

While statistically interpretable, these methods struggle with incorporate large 
heterogeneous features across many assets. 

4.2 Tree ensembles and feature-based learners 

 XGBoost/LightGBM (Chen & Guestrin, 2016): Strong baselines for tabular 
features; robust to missing data and effective with careful feature engineering. 

 Random Forests, CatBoost: Alternative ensemble methods; provide feature 
importance measures. 
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Key hyperparameters: number of trees, learning rate, max depth, subsampling; tune via 
time-aware cross-validation. 

4.3 Deep learning models 

 LSTM / GRU (Hochreiter & Schmidhuber, 1997): Sequence modeling for 
temporal dependencies. 

 Temporal Fusion Transformer (TFT) & Transformers (Vaswani et al., 2017; 
Lim et al., 2021): Attention mechanisms for multi-horizon forecasting; TFT 
provides interpretable attention and gating components well-suited to time-series. 

 Hybrid CNN-LSTM: For order-book images or short-term microstructure patterns. 

Training considerations: regularization (dropout, weight decay), sequence length 
selection, batch normalization for sequences, and early stopping conditioned on forward 
walk-forward validation. 

4.4 Model ensembling and stacking 

Ensembles across model families (statistical + tree + deep) often deliver improved 
stability via error decorrelation. Use stacking with out-of-fold predictions in the temporal 
domain respecting time ordering. 

5. Quantum machine learning approaches 

5.1 Quantum kernels and kernel methods 

Quantum kernel methods map classical data into a quantum Hilbert space via feature 
maps ( \Phi: x \mapsto |\Phi(x)\rangle ) realized by parameterized circuits, and compute 
kernel entries (K(x,x') = |\langle\Phi(x)|\Phi(x')\rangle|^2) or expectation-value kernels 
(Havlíček et al., 2019). Kernel ridge regression or kernel SVM can be applied for 
regression/classification. 

Prospects: In high-dimension/small-label regimes, quantum kernels may produce 
separability not achieved by classical kernels, potentially improving generalization 
(Havlíček et al., 2019). However, kernel evaluation cost grows with dataset size (requires 
many kernel evaluations), making scalability a key constraint. 

5.2 Variational quantum circuits (QNNs) for regression 

VQCs (QNNs) parameterize a circuit (U(\theta)) acting on an encoded state 
(|\Phi(x)\rangle); measurement yields features (y(x;\theta)) used for downstream 
predictions. For regression, a simple architecture is: 

1. Encode (x) into qubits (angle or amplitude encoding). 
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2. Apply layers of parameterized single- and two-qubit gates (ansatz). 

3. Measure a set of observables; aggregate into scalar/regression output via classical 
linear readout. 

Training: Optimize (\theta) via classical optimizers using the parameter-shift rule (Cerezo 
et al., 2021). Shot-noise and barren plateau issues necessitate careful ansatz design and 
gradient variance control. 

5.3 Hybrid quantum-classical architectures 

Practical near-term architectures use hybridization: 

 Classical encoder + quantum latent + classical decoder: Classical networks 
compress high-dimensional inputs into compact vectors (d ≈ 8–64) that are 
encoded into QNNs for richer transformations, then decoded by classical heads. 

 Quantum feature augmentations: Compute quantum kernel features offline for 
a subset of training data and combine with classical features through 
concatenation. 

Figure (conceptual)   hybrid pipeline: Input → classical preprocessing → quantum module 
(kernels / VQC) → classical ML head → prediction. 

5.4 Encoding strategies and resource tradeoffs 

 Angle encoding: Map components of feature vector into rotation angles on single 
qubits   linear in dimension. 

 Amplitude encoding: Potentially exponentially compress features into 
amplitudes, but state preparation is costly. 

 Basis encoding: Encode discrete/categorical info into computational basis states. 

Resource tradeoffs (qubits, circuit depth, shots) guide encoding choice: amplitude 
encoding may be impractical on NISQ devices due to state preparation cost, while angle 
encoding is hardware-efficient. 

5.5 NISQ constraints and mitigation strategies 

 Barren plateaus: Use problem-inspired ansatz and local cost functions to mitigate 
vanishing gradients (Cerezo et al., 2021). 

 Noise & error mitigation: Zero-noise extrapolation, measurement error 
mitigation, and readout calibration can improve effective fidelity. 
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 Shot budgeting: Efficiently schedule shots (measurements) during training; use 
higher shots for critic/validation and fewer shots for exploratory updates (Fatunmbi, 
2022). 

6. Experimental design and evaluation protocol 

This section provides a detailed, reproducible plan for experiments comparing classical 
and quantum methods. 

6.1 Datasets and pre-processing 

Recommended datasets: 

 Daily cross-section: S&P 500 constituents price and fundamentals from 2005–
2020. 

 Intraday microstructure: LOBSTER limit order book snapshots for selected 
equities (for liquidity forecasting). 

 Synthetic scenarios: Simulated multi-asset series incorporating stylized features 
(regime switches, jumps, correlated shocks) for stress tests. 

Preprocessing pipeline: time alignment, missing value handling (forward fill with 
indicator), log returns, rolling normalization (z-score over lookback window), and 
categorical encoding for event flags. Maintain strict chronological order. 

6.2 Train/validation/test splits 

Use rolling windows (e.g., 3-year training, 6-month validation, 6-month test) that 
advance monthly. For hyperparameter tuning, use nested rolling cross-validation to avoid 
look-ahead bias. 

6.3 Metrics 

 Point forecasts: MSE, RMSE, MAE, directional accuracy (hit ratio). 

 Value-oriented metrics: Information ratio, Sharpe ratio of strategy built on 
predictions, P&L after realistic transaction costs and slippage. 

 Risk metrics (volatility forecasts): QLIKE loss, VaR exceedance frequency. 

 Stability/robustness: Performance decay over out-of-sample horizons, sensitivity 
to covariate shift, adversarial robustness tests. 

 Computational & resource metrics: wall-clock time, CPU/GPU hours (classical), 
QPU time and shots (quantum), memory footprint. 

6.4 Baseline configurations and hyperparameters 



   Page 8 of 14 
 

 

 
 

Robotics, Autonomous, Machine Learning, and Artificial intelligence Journal       (Volume, II, Issue I, 2024) 

Classical baselines: 

 ARIMA/GARCH: select orders via AIC/BIC. 

 XGBoost: tune n_estimators [100–2000], learning_rate [0.01–0.3], max_depth [3–
12]. 

 LSTM: layers 1–3, hidden size 64–512, learning rate 1e-4–1e-3. 

 Transformer/TFT: model dim 64–512, heads 4–8, lookback 128–512. 

Quantum setups: 

 Quantum kernel SVM: choose feature maps: hardware-efficient vs problem-
aware; use classical kernel baselines (RBF, polynomial) tuned similarly. 

 VQC regression: ansatz depth L ∈ [1, 6], qubits q ∈ [4, 20] (depending on 
hardware/simulator), shots S ∈ {256, 512, 2048}. 

Hyperparameters tuned via grid/randomized search within temporal cross-validation. 

6.5 Training regime and reproducibility 

 Seed control for RNGs, deterministic data splits logged. 

 Use containerized experiments (Docker) and notebooks with exact dependency 
versions (Python, PennyLane/Qiskit for quantum runs, PyTorch/TF, XGBoost). 

 Use experiment tracking (MLflow/W&B) to log metrics, parameters, and artifacts. 

 For quantum runs, report hardware backend, calibration data (T1/T2, gate errors), 
and shot counts. 

6.6 Statistical comparison 

Use paired tests across rolling windows (Diebold-Mariano test for forecast accuracy 
differences; bootstrap confidence intervals for Sharpe ratio differences) to establish 
significance. 

7. Implementation details and pseudocode 

Below we include reproducible pseudocode for major pipelines. 

7.1 Classical deep learning pipeline (example: TFT) 

# Pseudocode: Training trainer for Temporal Fusion Transformer 

for window_start in rolling_windows: 

    train_data = get_train(window_start) 
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    val_data = get_val(window_start) 

    model = TFT(config) 

    for epoch in range(max_epochs): 

        for batch in train_data: 

            preds = model(batch.inputs) 

            loss = loss_fn(preds, batch.targets) 

            loss.backward() 

            optimizer.step() 

            optimizer.zero_grad() 

        val_loss = evaluate(model, val_data) 

        if early_stop(val_loss): break 

    save_model(model, meta) 

7.2 Quantum kernel training (kernel ridge regression) 

# Compute quantum kernel matrix K_ij = <Phi(x_i)|Phi(x_j)>^2 via quantum circuit 

for i in range(n_train): 

    for j in range(i, n_train): 

        K[i,j] = quantum_kernel(x_i, x_j, backend, shots) 

        K[j,i] = K[i,j] 

 

# Solve kernel ridge regression: alpha = (K + lambda I)^{-1} y 

alpha = solve_linear_system(K + lambda_reg * I, y_train) 

# Prediction for test point x_star: k_star = [quantum_kernel(x_star, x_i)] 

y_pred = k_star @ alpha 

7.3 VQC regression (hybrid gradient-based loop with parameter-shift) 

# Pseudocode for VQC training using parameter-shift gradient 

theta = initialize_parameters(ansatz) 

for epoch in range(EPOCHS): 
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    for batch in dataloader: 

        # classical encoding 

        z = classical_encoder(batch.inputs)  # reduce dims 

        # compute predictions with quantum circuit 

        y_hat = [] 

        for x in z: 

            state = prepare_quantum_state(x)  # angle encoding 

            apply_ansatz(state, theta) 

            y_hat.append(measure_expectation(state, shots)) 

        loss = MSE(y_hat, batch.targets) 

        # estimate gradients for theta using parameter-shift 

        grad_theta = parameter_shift_gradients(theta, z, loss_fn) 

        theta = optimizer.update(theta, grad_theta) 

Note: Parameter-shift requires two evaluations per parameter per gradient estimate; for 
large parameter counts, consider stochastic gradient approximations (SPSA) or hybrid 
local updates. 

8. Expected empirical behaviors and interpretability 

Because quantum advantage for practical ML tasks remains unproven at scale, this study 
emphasizes comparative expectations rather than claims of superiority. 

8.1 When classical methods excel 

 Large labeled datasets and abundant compute: deep learning and ensemble 
methods scale efficiently and provide strong baselines. 

 Highly nonstationary markets: transfer learning and continual learning 
approaches in classical ML currently offer practical solutions for concept drift. 

8.2 Where QML may be promising 

 Small-label, high-dimension regimes: quantum kernels may create separable 
representations that classical kernels do not capture (Havlíček et al., 2019). 

 Combinatorial subproblems: quantum annealers/QAOA could provide candidate 
sets for discrete portfolio selection under constraints. 
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 Feature augmentation: QNNs as compact feature transformers could help in 
cases where classical embeddings are difficult to design. 

8.3 Interpretability & model risk 

Financial institutions require interpretability and model governance. Classical methods 
(linear models, tree ensembles) provide clearer feature importances and partial 
dependence plots. For QML, propose the following interpretability practices: 

 Surrogate classical models: Fit an interpretable surrogate to QNN outputs for 
explanation (LIME/SHAP over QNN features). 

 Feature importance via ablation: Measure predictive degradation when quantum 
features are removed. 

 Robustness checks: Sensitivity to perturbations and stress scenarios. 

9. Computational cost, scaling, and practical constraints 

9.1 Classical compute 

Costs measured by GPU/CPU hours; scaling to hundreds/thousands of assets requires 
cluster computing and engineered feature pipelines. 

9.2 Quantum compute and hybrid economics 

Quantum resource accounting should include: 

 QPU wall time: provider queue + execution time. 

 Shot counts: per circuit measurement repetitions. 

 State preparation overhead: for amplitude encoding or complex feature maps. 

 Simulated quantum costs: classical simulators scale exponentially and are 
feasible only for small qubit counts or approximate circuits. 

A realistic cost-benefit analysis must compare business value uplift (e.g., additional 
Sharpe points) against quantum access fees and integration engineering. Near-term pilot 
designs should minimize QPU calls (batch kernel computations offline, caching) and rely 
on simulators for development. 

10. Robustness, risk, and regulatory considerations 

Financial models influence capital and customer outcomes; thus model risk management 
is essential. 

 Backtesting with transaction costs and slippage: Ensure reported P&L is 
realistic. 
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 Stress testing across regimes: Evaluate performance during tails (crashes, 
liquidity droughts). 

 Governance & audit trails: Log model versions, data lineage, and quantum 
backend parameters. 

 Regulatory transparency: Many regulators require explainable models for 
trading and risk management decisions; prepare surrogate explanations for 
quantum components. 

11. Limitations and open research problems 

 Scalability of quantum methods: Kernel evaluations scale O(n²) unless 
approximations used; QPU throughput remains limited. 

 Empirical evidence: Proofs of practical quantum advantage for forecasting 
remain lacking; prior literature shows theoretical potential but limited real-world 
demonstrations (Biamonte et al., 2017; Havlíček et al., 2019). 

 Noisy training & barren plateaus: Algorithmic research is needed to mitigate 
these effects for VQCs (Cerezo et al., 2021). 

 Data non-stationarity: QML research must adapt to concept drift and continual 
learning contexts common in finance. 

12. Prioritized research roadmap 

Short term (0–18 months) 

 Build reproducible benchmark suite (public datasets + synthetic stress scenarios). 

 Implement hybrid classical + quantum feature pipelines on simulators; perform 
offline kernel comparisons. 

 Develop best practices for shot budgeting and parameter-shift adaptations. 

Medium term (18–48 months) 

 Pilot QML feature augmentations in shadow mode on low-latency pipelines. 

 Evaluate QAOA/annealer for discrete selection subproblems at moderate scale. 

 Collaborate with cloud QPU providers to benchmark real hardware performance 
on finance tasks. 

Long term (48+ months) 

 Mature fault-tolerant QML algorithms for large-scale optimization. 
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 Integrate quantum pipelines into live trading systems with robust governance and 
economic validation. 

13. Conclusions 

This manuscript provides a comprehensive comparative framework and experimental 
blueprint for evaluating classical and quantum machine learning approaches to large-
scale financial forecasting. Classical ML remains the workhorse with mature toolchains 
and demonstrated performance at scale, whereas QML offers intriguing new 
representational paradigms that may confer advantage in particular problem regimes 
especially small-label/high-dimension tasks or combinatorial subproblems. We 
emphasize reproducible experimental protocols, rigorous walk-forward validation, 
realistic resource accounting, and model governance as prerequisites for any claims of 
quantum benefit. The road ahead requires interdisciplinary collaboration quantum 
algorithm researchers, financial engineers, and operations teams to translate theoretical 
promise into verified business value. 
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