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Abstract 
Global supply chains are increasingly automated, instrumented, and interconnected 
creating opportunities for real-time optimization but also novel, rapidly evolving security 
threats (tampering, insider fraud, diversion, adversarial manipulation of sensors and 
models). Reinforcement learning (RL) has emerged as a powerful paradigm for sequential 
decision making in dynamic supply-chain environments, enabling adaptive routing, 
anomaly response, and recovery actions. Simultaneously, quantum neural networks 
(QNNs) and other hybrid quantum-classical components promise richer representations 
and novel algorithmic primitives that may enhance sample efficiency, combinatorial 
search, and kernel expressivity in data-scarce or adversarial settings. This paper 
integrates these two frontiers and presents a comprehensive treatment of RL–QNN 
hybrid architectures tailored for real-time supply-chain security. We provide (1) formal 
problem definitions and threat models, (2) theoretical and practical descriptions of hybrid 
RL–QNN designs (policy/value parameterizations, quantum feature maps, gradient 
estimation), (3) reproducible training algorithms and pseudocode, (4) evaluation and 
adversarial robustness frameworks, (5) deployment and MLOps guidance for latency-
bound environments, and (6) a detailed research roadmap prioritizing near-term hybrid 
pilots and longer-term fault-tolerant ambitions. We ground the discussion in recent 
literature on QNNs, variational quantum algorithms, quantum reinforcement learning, and 
RL for supply chains (Cerezo et al., 2021; Havlíček et al., 2019; Meyer et al., 2024; Yan, 
2022; Correll et al., 2023). Practical recommendations emphasize measurable security 
outcomes, reproducibility, and interpretable governance. 

Keywords: reinforcement learning; quantum neural networks; supply-chain security; 
adversarial robustness; MLOps; variational quantum circuits; real-time systems 

1. Introduction 

1.1 Motivation 

Modern supply chains are cyber-physical systems: sensors (IoT), telemetry, automated 
warehouses, and digital marketplaces produce dense temporal signals that can be 
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exploited for real-time decision making. The same instrumentation, however, creates a 
broad attack surface ranging from tampered sensors to coordinated fraud rings that can 
cause financial loss, reputational damage, and operational disruption (Yan, 2022; Ma et 
al., 2024). Reinforcement learning (RL) provides a principled framework for sequential 
decision-making under uncertainty and has been successfully applied to inventory 
control, routing, disruption recovery, and anomaly mitigation (Rolf, 2023; Yan, 2022). Yet 
RL models are vulnerable to adversarial manipulation (Gleave et al., 2020; Vyas, 2024), 
and classical function approximators can struggle with highly combinatorial or small-label 
regimes present in supply-chain security tasks. 

Quantum neural networks (QNNs), implemented via parameterized quantum circuits 
(PQCs), provide alternative inductive biases and access to high-dimensional quantum 
feature spaces (Havlíček et al., 2019; Cerezo et al., 2021). Hybrid architectures   classical 
RL agents that use QNNs as policy/value approximators or QNNs as representation 
modules   are emerging in the literature (Meyer et al., 2024; Correll et al., 2023). Hybrid 
RL–QNNs offer the promise of richer features (quantum kernels, amplitude encodings) 
for sparse-label or adversarial detection tasks, and quantum subroutines 
(QAOA/annealers) for combinatorial subproblems such as resilient routing under attack. 

1.2 Scope and Contributions 

This manuscript focuses on research methods and applied design for RL–QNN hybrid 
systems targeted at real-time supply-chain security. The primary contributions are: 

1. Formal problem framing linking supply-chain security objectives to Markov 
Decision Processes (MDPs) and multi-agent extensions under adversary 
interactions. 

2. Architectural taxonomy for hybrid RL–QNN systems (policy parameterizations   
quantum policy/value networks, quantum embedding layers, quantum-assisted 
combinatorial subroutines). 

3. Reproducible algorithms and pseudocode for actor-critic and policy-gradient 
RL using QNN modules; practical gradient estimation (parameter-shift), shot 
budgets, and hybrid optimizers. 

4. Adversarial threat modeling and robustness methodology: attacker goals, 
capabilities, and metricized defenses (adversarial training, detection thresholds, 
game-theoretic reserves). 

5. Evaluation plan: simulation benchmarks, off-policy evaluation with logged data, 
sensitivity analyses, and security KPIs. 
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6. Deployment & MLOps blueprint for low-latency inference and resilient training, 
including model governance, logging, and human-in-the-loop escalation. 

7. Roadmap and prioritized research agenda bridging NISQ-era pilots and long-
term fault-tolerant goals. 

We integrate and cite the most relevant literature through 2024 (Biamonte et al., 2017; 
Havlíček et al., 2019; Cerezo et al., 2021; Meyer et al., 2024; Correll et al., 2023) and 
include practitioner resources on RL for supply chains (Yan, 2022; Rolf, 2023; Ma et al., 
2024), as well as domain security work (Samuel, 2021, 2023). 

2. Background: Reinforcement Learning, QNNs, and Supply-Chain Security 

This section gives compact background: MDPs and RL basics, parameterized quantum 
circuits and QNN properties, and supply-chain security characteristics that affect 
modeling choices. 

2.1 Reinforcement Learning for Sequential Decision-Making 

An MDP is defined as ((\mathcal{S}, \mathcal{A}, P, r, \gamma)) where (\mathcal{S}) is 
the state space, (\mathcal{A}) the action space, (P(s'|s,a)) transition probabilities, (r(s,a)) 
reward, and (\gamma) the discount factor. The RL agent seeks policy (\pi_\theta(a|s)) 
parameterized by (\theta) to maximize expected return 
(J(\theta)=\mathbb{E}[\sum_{t=0}^\infty \gamma^t r_t]) (Sutton & Barto, canonical text). In 
supply chains, states often include inventory levels, lead times, shipments, telemetry, and 
anomaly indicators; actions include rerouting, hold/release orders, isolation of nodes, and 
investigative/forensic triggers. Multi-agent extensions model different organizations 
(manufacturer, carrier, retailer) or distributed controllers (Littman, 1994; Foerster et al., 
2016). 

2.2 Threat Landscape & Security Objectives in Supply Chains 

Real-time supply-chain security problems have several characteristic properties: 

 Heterogeneous observations: sensor measurements (noisy), transactional 
records, third-party feeds (weather, port status). 

 Partial observability and delays: delayed confirmations, censored signals. 

 Adversarial actors: tamperers, insiders, fraud rings able to manipulate 
observations or transactions. 

 Cost asymmetry: false positives (unnecessary holds) have economic costs; false 
negatives (missed attacks) can cause severe downstream disruption. 
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Key security objectives are to detect, mitigate, and recover from security incidents with 
bounded operational cost and latency. RL lends itself to policies that trade off economic 
loss and mitigation overhead. 

2.3 Quantum Neural Networks (QNNs) & Variational Quantum Circuits 

QNNs are instantiated via parameterized quantum circuits (PQCs)   sequences of 
parameterized single- and two-qubit gates that map classical inputs encoded into 
quantum states to expectation-value outputs (Cerezo et al., 2021; Havlíček et al., 2019). 
Important QNN design choices: 

 Encoding/feature maps: angle encoding, amplitude encoding, basis encoding 
(Havlíček et al., 2019). 

 Ansatz/variational layers: hardware-efficient ansatz vs problem-inspired ansatz 
(Cerezo et al., 2021). 

 Measurements and readout: expectation values of observables (e.g., Pauli Z) 
often produce scalar outputs that are then postprocessed by classical layers. 

QNNs can act as expressive feature transformers (quantum kernels) or direct function 
approximators for policies/values in RL (Meyer et al., 2024). Practicalities for NISQ-era 
devices include circuit depth restrictions, noise, shot/noise tradeoffs, and barren plateau 
phenomena (Cerezo et al., 2021; Zhang, 2024). 

3. Problem Formulation: Real-Time Supply-Chain Security as an RL Task 

We formalize the supply-chain security problem suitable for RL–QNN hybrids. 

3.1 State and Observation Spaces 

Define the agent’s observation (o_t) as an aggregation: 

[ 
o_t = { I_t, T_t, S_t, F_t, E_t } 
] 

 (I_t): Inventory vectors per node 

 (T_t): Telemetry (sensor streams, device health) 

 (S_t): Shipment/visibility (GPS, ETAs) 

 (F_t): Fraud/fingerprint features (transaction anomalies) 

 (E_t): Exogenous context (weather, port status) 



   Page 30 of 42 
 

 

 
  

Robotics, Autonomous, Machine Learning, and Artificial intelligence Journal      (Volume, III, Issue I, 2025) 
 

Observation dimensionality is often large and heterogeneous; QNNs are used as compact 
representation modules by encoding suitably preprocessed classical vectors into qubit 
states. 

3.2 Action Space 

Typical action primitives include: 

 Mitigation actions: quarantine shipment, reroute, hold, rerank supplier. 

 Investigative actions: request forensic inspection, escalate to human operator. 

 Proactive adjustments: adjust reorder quantity, preemptive shipments. 

Action selection must respect latency budgets: high-frequency decisions (e.g., immediate 
hold) require millisecond to second inference. 

3.3 Reward Design 

Design a reward that balances security outcomes and operational costs: 

[ 
r_t = -\alpha \cdot C_{breach}(t) - \beta \cdot C_{false_positives}(t) - \gamma \cdot 
C_{delay}(t) + \delta \cdot \text{RecoveryBenefit}(t) 
] 

Weights (\alpha,\beta,\gamma,\delta) reflect business priorities. For detection tasks, 
reward may be sparse, motivating shaped rewards, auxiliary objectives (prediction of risk 
scores), or constrained RL formulations. 

3.4 Adversary and Game Model 

We model adversary (A) as an agent with capabilities to interfere with observations 
(sensor spoofing), manipulate transactions, and adapt strategies. The environment 
becomes a (partially observable) stochastic game; we consider worst-case adversary 
formulations (minimax) and stochastic adversaries (best-response learning). Adversary 
modeling is central to robust training and evaluation (Gleave et al., 2020; Vyas, 2024). 

4. Architectural Patterns for RL–QNN Hybrids 

This section catalogs candidate hybrid architectures and the rationale for each. 

4.1 QNN as Representation Learner (State Encoder) 

Pattern: Preprocess raw features (\mathbf{x}) with a classical encoder (E_{c}) producing 
compact vector (z\in\mathbb{R}^d) (d small). Encode (z) into a quantum state 
(|\phi(z)\rangle) (e.g., angle or amplitude encoding). Apply PQC (U(\theta)) and measure 
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expectation values to yield transformed features (q=z' \in\mathbb{R}^k). Then feed (q) 
into classical policy/value heads. 

Rationale: QNN feature maps can separate classes in Hilbert space and may improve 
small-label generalization for anomaly detection or loss-sensitive decisions (Havlíček et 
al., 2019). 

Caveats: Encoding costs and measurement noise; requires tight design to keep latency 
acceptable. 

4.2 QNN as Policy Network (Direct Action Parameterization) 

Pattern: Parameterize policy (\pi_\theta(a|s)) by a QNN: (\pi_\theta(a|s) = 
\mathrm{softmax}(f_\theta(s))) where (f_\theta) results from QNN measurements. Use 
policy gradient / actor-critic updates with gradient estimation via parameter-shift or 
stochastic estimators. 

Rationale: QNNs may produce richer nonlinear mappings for complex action mappings 
(Meyer et al., 2024). Works have implemented VQCs for deep RL (Chen et al., 2020; 
Chen et al., 2024). 

Caveats: Policy gradient variance amplified by shot noise; need careful estimator budget 
and baselines. 

4.3 Hybrid Pipeline: Classical Candidate + QNN Re-ranking (Low-Latency) 

Pattern: For actions requiring millisecond response (e.g., immediate hold or release), 
perform classical fast candidate generation and then use QNN re-ranking in an 
asynchronous cached manner or for re-scoring top K candidates. 

Rationale: Reduces quantum inference calls, keeps real-time path classical while 
leveraging quantum enhancement for high-value decisions. 

4.4 Quantum-Assisted Combinatorial Subroutines 

Pattern: Use QAOA or quantum annealing for discrete combinatorial subproblems 
(bundling, routing under compromised nodes). Use hybrid solver to propose candidate 
solutions that are validated and refined by classical heuristics. 

Rationale: When discrete combinatorics dominate runtime (routing under constraints), 
quantum annealing/QAOA can provide candidate sets for RL to evaluate (Correll et al., 
2023; Weinberg et al., 2022). 

5. Learning Algorithms and Practical Training Procedures 
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We now present concrete algorithms and practical considerations for training RL agents 
whose function approximators include QNNs. 

5.1 Optimization & Gradient Estimation for QNN Parameters 

The classical optimizer updates (\theta) based on gradients estimated by the parameter-
shift rule when gates are single-parameter rotations: 

[ 
\frac{\partial \langle \hat{O} \rangle}{\partial \theta_i} = \frac{1}{2} \Big( \langle \hat{O} 
\rangle_{\theta_i+\frac{\pi}{2}} - \langle \hat{O} \rangle_{\theta_i-\frac{\pi}{2}} \Big) 
] 

(Works when parameterized ansatz gates satisfy certain properties see Cerezo et al., 
2021; Cornelissen, 2018; Meyer et al., 2024). For noisy devices, gradient variance 
increases with shot noise; gradient-free optimizers (SPSA, COBYLA) are viable 
alternatives. 

5.2 Actor-Critic with QNN Critic (Algorithm) 

Below is a reproducible high-level pseudocode for a hybrid actor-critic algorithm where 
the actor is classical and the critic is a QNN (alternating pattern is also common). 

Algorithm 1: Hybrid Actor-Critic (Classical Actor, QNN Critic) 

 

Inputs: Env E, classical actor π_φ(a|s), QNN critic Q_θ(s) 

Hyperparams: episodes N, steps T, batch size B, shots S 

 

Initialize φ (actor parameters), θ (QNN parameters) 

for episode = 1..N: 

    s0 <- E.reset() 

    trajectory = [] 

    for t = 0..T-1: 

        a_t ∼ π_φ(.|s_t) 

        s_{t+1}, r_t, done <- E.step(a_t) 

        trajectory.append((s_t, a_t, r_t, s_{t+1})) 
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        if done: break 

    # Compute returns and/or GAE advantages 

    for minibatch in sample_batches(trajectory, B): 

        # Critic update (QNN) 

        for s in minibatch.states: 

            z = classical_encoder(s) 

            prepare quantum state |φ(z)  with S shots 

            Q_val = measure_QNN(θ, |φ(z) , S) 

        loss_Q = MSE(Q_val, bootstrap_targets) 

        θ <- θ - η_Q * grad_estimate(loss_Q, θ)  # parameter-shift or SPSA 

 

        # Actor update (classical) 

        advantages = bootstrap_targets - Q_val.detach() 

        loss_actor = -E[ log π_φ(a|s) * advantages ] 

        φ <- φ - η_actor * ∇_φ loss_actor 

Notes: measurement shot count S controls estimator variance; QNN backprop is via 
parameter-shift; detach prevents actor gradients flowing into QNN. 

5.3 Policy Gradient with Quantum Policy (Algorithm) 

If the policy itself is quantum-parameterized, modify the actor update to use quantum 
gradients estimated via parameter shift. The policy gradient becomes: 

[ 
\nabla_\theta J(\theta) = \mathbb{E} \Big[ \nabla_\theta \log \pi_\theta(a|s) \cdot A(s,a) 
\Big] 
] 

Compute (\nabla_\theta \log \pi_\theta) by differentiating measured outputs (with 
parameter-shift). Use baselines to reduce variance. 

5.4 Measurement & Shot Budgeting 

Measurement cost is a central engineering parameter. Use the following guidelines: 
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 Training: allow larger shot budgets for critic updates (stability). Consider 
progressive shot schedules (fewer shots early, increasing later). 

 Inference: keep shots minimal; use cached re-scoring for top K candidates. 

 Hybrid variance control: combine multiple measurement estimators and 
classical surrogates. 

Citations: approaches for shot-scheduling, surrogate models, and optimization heuristics 
appear in the quantum ML literature (Cerezo et al., 2021; Chen et al., 2020). 

6. Adversarial Threats & Robustness for RL–QNN Systems 

Security is the central purpose; here we map potential attacks to defense strategies. 

6.1 Threat Taxonomy 

1. Observation Spoofing: attacker modifies telemetry to mask diversion or mislead 
the agent. 

2. Data Poisoning: contaminated training data (logs) bias agent behavior; especially 
dangerous for online RL. 

3. Adversarial Policies: adversarial agents that manipulate environment dynamics 
to create misleading trajectories (Gleave et al., 2020). 

4. Model Extraction & Inference Attacks: attackers probe policy APIs to infer 
sensitive patterns or extract model parameters. 

5. Supply-chain compromises of compute fabric: manipulation or denial of 
quantum/cloud resources. 

6.2 Defense Approaches 

 Adversarial Training: simulate attack policies and include them in training as 
opponents (Gleave et al., 2020; Gross, 2023). 

 Robust RL formulations: distributionally robust RL or constrained optimization 
where worst-case losses bounded (Duchi et al., Literature). 

 Data provenance and secure ingestion: tamper-evident logs (blockchain/zero-
trust) for audit trails (Ma et al., 2024; Samuel, 2021). 

 Differential privacy: limit information leakage from policy updates and prevent 
model inversion (McMahan et al., 2017; Cummings on DP). 
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 Ensemble & detection: monitor ensemble disagreement (classical and QNN) as 
a signal of anomalous inputs. 

6.3 Quantum-Specific Threats 

 Hardware level attacks: supply-chain attacks on QPU firmware; side channels 
from quantum cloud providers (Beaudoin et al., 2022). 

 Measurement tampering: adversary influencing measurement results in a shared 
cloud QPU context   mitigated by authenticated channels and cryptographic 
attestations. 

7. Experimental Design, Benchmarks, and Evaluation 

This section prescribes rigorous evaluation methodology for RL–QNN hybrids. 

7.1 Synthetic & Industry-Scale Simulation Environments 

 Simulators: build high-fidelity supply-chain simulators modeling stochastic 
demand, transit delays, and sensor noise. Correll et al. (2023) and Weinberg et al. 
(2022) demonstrate simulation-in-the-loop evaluations for routing tasks. 

 Benchmarks: propose a benchmark suite with scenarios: 

o Normal operations: no adversary. 

o Sensor spoofing: time-windowed spoofing attacks. 

o Coordinated fraud: multi-node collusion to divert shipments. 

o Supply shocks: sudden disruption to upstream nodes. 

 Data fidelity: use anonymized enterprise logs for curriculum learning and domain 
transfer. 

7.2 Baselines 

 Classical RL baselines: DQN, PPO, SAC, and multi-agent RL 
(MADDPG/COMA). 

 Hybrid baselines: classical encoders with classical policy but quantum-assisted 
re-ranking. 

 Combinatorial baselines: Mixed Integer Programming (Gurobi), classical 
annealing heuristics. 

7.3 Metrics 
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 Security metrics: 

o Detection Rate (True Positive Rate for compromises). 

o Time-to-Mitigation (seconds/minutes). 

o False Positive Rate (operational cost). 

o Economic Impact Averted (monetary). 

 RL metrics: 

o Cumulative reward, sample efficiency (episodes to x% performance). 

 Robustness metrics: 

o Worst-case regret under adversarial policies (Gleave et al., 2020). 

o Attack success rate against learned policies. 

 Quantum resource metrics: 

o QPU time, shots per update, qubit count, circuit depth. 

7.4 Off-Policy / Counterfactual Evaluation 

For logged historical data, use off-policy estimators (Inverse Propensity Scoring, Doubly 
Robust estimators) to estimate policy value and mitigate evaluation bias (Joachims et al., 
2017). 

8. Case Study: Simulated RL–QNN Pipeline for Sensor Spoofing Detection and 
Response 

We present a prototypical experimental case (simulation) illustrating training and 
evaluation flow. 

8.1 Scenario 

 A two-tier supply chain (warehouse + carrier network). Sensor spoofing adversary 
intermittently manipulates GPS and temperature sensors to hide diversion and 
tamper events. 

 The agent must decide per-shipment whether to continue routing, perform remote 
verification, or require human inspection. 

8.2 Model 

 State encoder: classical CNN/MLP for sensor sequences → 32-dim vector. 
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 QNN module (representation): angle encoding into 6 qubits, 4 variational layers, 
readout yields 4 features. 

 Actor: classical MLP mapping [classical features + QNN features] to action logits. 

 Critic: classical MLP. 

8.3 Training 

 Hybrid actor-critic with QNN encoder trained end-to-end. Shot schedule: S=512 
early, S=2048 late for critic stability. Optimizers: Adam for classical, SPSA for QNN 
(alternatively parameter-shift when available). 

8.4 Results (Hypothetical / Suggested Reporting) 

 Sample efficiency: hybrid model reaches baseline reward in ~15% fewer 
episodes on small-label spoofing regimes (consistent with small-sample benefits 
reported by quantum kernel literature) report statistically across seeds. 

 Robustness: under adversarial policy A*, hybrid agent maintains lower false-
negative rate than classical baseline (p<0.05). 

 Quantum resources: average per-update wall time dominated by QPU latency; 
demonstrate use of simulated QNNs for algorithmic development and cloud QPU 
for small, targeted validation runs (Correll et al., 2023). 

(Actual empirical numbers should be produced by implementing the described pipeline 
and running controlled experiments.) 

9. MLOps, Governance, and Deployment Considerations 

9.1 Latency, Orchestration, and Hybrid Inference 

 Real-time constraints: use QNN inference sparingly in the critical path. Preferred 
patterns include asynchronous re-scoring, top-K batch re-scoring, and cached 
QNN results. 

 Orchestration: integrate QPU calls via cloud providers (IBM, IonQ, Rigetti) or on-
prem quantum accelerators using a unified middleware (PennyLane/Qiskit) 
shielding the classical stack. 

 Edge vs Cloud: perform lightweight prefiltering at edge; heavy compute offloaded 
to cloud/quantum backends. Enforce authenticated channels and attestations. 

9.2 Model Registry and Versioning 
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 Track QNN circuit definitions, parameter values, shot budgets, and hardware 
backends. 

 Produce model cards and quantum model cards (Mitchell et al., 2019; adapted) 
capturing intended use, limitations, fairness tests, and security constraints. 

9.3 Logging and Post-mortem Analysis 

 Log raw inputs, QNN readouts, classical features, and final actions for every 
decision. To preserve privacy, log aggregates and use authenticated storage with 
tamper evidence (Samuel, 2021). 

9.4 Human-in-the-Loop & Escalation 

 Define automation tiers: fully automated for low-cost mitigation; human-in-loop for 
medium/high impact actions. Establish clear SLAs for operator review. 

10. Evaluation of Practicality: When to Pilot RL–QNN Hybrids 

We propose heuristics to select pilot problems: 

1. Small-label or high feature-complexity regimes where classical models require 
prohibitive labeled data and quantum kernels may improve reachability (Havlíček 
et al., 2019). 

2. Moderate combinatorial subproblems (vehicle routing, regional assortment 
under constraints) where hybrid annealing/QAOA can propose candidate sets 
(Correll et al., 2023; Weinberg et al., 2022). 

3. High-value security decisions where small accuracy gains produce outsized 
economic benefit. 

4. Availability of realistic simulators and enterprise willingness to run online 
randomized experiments or shadow trials. 

11. Challenges, Limitations, and Open Problems 

11.1 Hardware Limitations & Noisy Devices 

NISQ devices have limited qubit counts, limited connectivity, and noise, constraining 
circuit depth and expressivity (Preskill, 2018; Cerezo et al., 2021). 

11.2 Barren Plateaus & Optimization Complexity 

Parameter landscape issues such as barren plateaus complicate training and may 
demand problem-aware ansatz and initialization (Cerezo et al., 2021; Zhang, 2024). 
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11.3 Explainability & Regulatory Compliance 

QNN internals are less interpretable than classical models. For regulated decisions in 
supply chains (e.g., delaying shipments for inspection), design surrogate explanations 
and human-readable decision artifacts (Mitchell et al., 2019). 

11.4 Security & Adversarial Robustness Remain Open 

Adversarial policies that target RL agents in complex supply chains require ongoing 
research in robust RL, game-theoretic defenses, and economic modeling of false 
positive/negative costs (Gleave et al., 2020; Gross, 2023). 

12. Roadmap and Prioritized Research Agenda (Near, Mid, Long Term) 

12.1 Near Term (0–24 months) 

 Benchmark suite creation: simulated supply-chain security tasks with adversarial 
scenarios. 

 Hybrid prototypes: QNN feature encoders with classical RL policies in simulation; 
proof-of-concept deployments in shadow mode (Correll et al., 2023). 

 Tooling: standardized interfaces (PennyLane, PennyLane-RL wrappers), shot 
scheduling utilities, and reproducible experiment repositories. 

12.2 Mid Term (2–5 years) 

 Federated hybrid learning: privacy-preserving cross-platform collaborations for 
fraud detection (McMahan et al., 2017; Samuel, 2021). 

 Adversarial RL defenses: combine robust RL and quantum encodings to resist 
adaptive attackers. 

 Hardware-in-the-loop studies: increasing use of cloud QPUs for targeted 
subroutines with cost/benefit analysis. 

12.3 Long Term (5+ years) 

 Fault-tolerant quantum RL components for combinatorial optimization at scale. 

 Standardized governance for quantum-augmented automated decision systems. 

 Economic integration: evaluating TCO and return on quantum adoption for 
enterprise supply chains. 

13. Conclusion 
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Hybrid RL–QNN architectures provide a promising direction for enhancing real-time 
supply-chain security by combining adaptive sequential decision making with novel 
representation and combinatorial optimization primitives available in quantum computing. 
However, benefits are conditional on problem selection, simulator fidelity, careful 
experimental validation, and robust governance. Near-term value will most likely arise 
from targeted hybrid pilots that use QNNs as representation modules or quantum 
annealers for discrete subroutines, supported by classical RL agents for the control loop. 
Rigorous adversarial evaluation, measurement budgeting, and explainability practices 
are essential to ensure operational safety and regulatory compliance. The research 
roadmap proposed here prioritizes reproducible benchmarks, hybrid tool chains, and 
federated privacy-preserving experiments as the logical next steps towards responsible 
industrial adoption. 
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